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ABSTRACT respectively. Superscripi®, H and} denote transpose, Hermitian
transpose and Moore—Penrose pseudo—invelse. the identity

The problem of incorporating partial knowledge of measurement | .. -0 0'ic matrix of all zeros.

noise into a frequency domain adaptive filtering scheme is ad-

dressed.The proposed algorithm is obtained by minimizing a BLUE

criterion function using the stochastic gradient method and then 2. DERIVATION
switching over to the frequency domain to reduce the computa-
tional complexity. The performance of the algorithm in the situa-
ti_ons of_ coloreq measurement noise is demonst_rated by means of V = (Xh—y)" (Ry + XXT)'(Xh — y), )
simulations using stationary as well as speech signals.

Consider the criterion function

whereh is the N vector of unknown filter coefficients; is a pos-
1. INTRODUCTION itive constantX is the M x N matrix of the input signal samples
X = [x(t)...x(t — N +1)] with x(t) = [zt prt1,...,2¢)%.
Most of the existing adaptive algorithms are designed to minimize This definition ofX is perhaps not the most consequent one but it
in some sense the error signal power or some estimate of it [3]./eads to the frequency domain algorithms which show strong sim-
This approach implicitly assumes that the measurement noise igllarities with the classical overlap-save frequency domain adap-
white or absent, an assumption which may or may not be satisfiedtive filter (FDAF) algorithms described in [1, 3, 9]. The vector
in practice. The assumption is likely to be satisfied if the mea- ¥ = Xh + v is the M vector of observed signal samples and
surement noise is dominated by thermal and quantization noises is the M vector of measurement noise with symmetric Toeplitz
On the other hand in the applications like voice echo cancellation covariance matriR, .
the measurement noise mainly consist of background sounds ina  Derivative of the criterion function with respect to the un-
room and the assumption of whiteness can easily be violated. known vectorh reads

In this paper a best linear unbiased estimate (BLUE) criterion gy, r ot r Tt
function is used as the target function in the design of an adaptive o = 2[X7 (yRy + XX7)'Xh — 2X" (YR, + XX )"y
algorithm. By this app_roach the c_olor of the measurement noise — —9XT(R. + XX 5
can be accounted for in the algorithm and a better performance - (VRo + )'e, ©)
can be expected.

Some earlier work in a similar direction can be found in [4]
and [6], where the measurement noise is assumed to be an autore- | — (XT(A,RU + XXT)Tx)*le(yRU + XXT)Ty, (3)
gressive (AR) process. It is then proposed to apply a whitening
filter to the residual signal before it is fed back to the coefficient In a way similar to that used in [8] pp. 89-90 it can be shown
updates. In [6] it is assumed that the proper whitening filter is that (3) is the BLUE ofh for the case of possibly singuld..
knowna priori while an adaptive whitening is considered in [4]. It is further argued in [8] that this estimate (for the cgse= 1)

The approach taken in this paper differs from these of [4] has better numerical properties than the more traditional BLUE
and [6] in several ways. First, we do not assume any particular resulting from minimization ofXh — y)”R; ' (Xh — y) which
model for the measurement noise (it is, though, assumed that ds used in [4].
correlation matrix of reasonable size describes the noise properties  Next, let us build a gradient algorithm minimizing (1) as
adequately). Second, a frequency domain algorithm is developed .
in this paper. Third, a variant of the BLUE criterion known for e(t) =y(t) — X(¢)h(¢) (4)
its good numerical properties [8] is minimized here. Fourth, the N .
way of obtaining information concerning the measurement noise h(t +1) =h(t) + pX” () (YRo + X(t)XT(t))Te(t)' ®)
is somewhat intermediate to these of [4] and [6]. More specifi- In the above equations the length of the entire sighfhas been
cally, as the main focus in this paper is on the voice echo cancella-replaced by a block lengtl, < M in all corresponding matrix
tion applications, the noise correlation can be estimated during thedimensions. Note, that in the case of whitethe algorithm coin-
natural pauses in speech. cides with the relaxed and regularized form of the affine projection

In the following the italic, bold face lower case and bold face algorithm [2] with the regularization parameter proportional to the
upper case letters are used for scalars, column vectors and matriceeasurement noise variance.

wheree = y — Xh. The filter coefficient estimate is thus



In this paper we are, however, interested in building a fre-
guency domain algorithm so we proceed defining &n+ L) x
(N + L) cyclically extended input signal matrix

X.(t) = cycl([zt—N—L+1 Tt Tt—1 ... Tt—N—L+2])

Tt—N—-L+1 Tt Ti—N—-L+2
Tt—N—-L+2 Tt—N-L+1 Tt—N—-L+3
= Tt—L Tt—L+1 Tt—L—-1
Tt—L+1 Tt—L Tt—L—2
Tt Tt—1 Tt—N—-L+1

Note, that this is just one patrticular cyclic extension of several pos-

sible. The advantage of this one is that it leads to intuitively well

understandable algorithms. The same extension was used in [1].

The original input signal matriX (¢) appears in the lower left
corner ofX.(¢) and consequently

The matrixX. () is right—cyclic by construction and soX” (t).
The eigendecomposition of a right—cyclic matrix (see e.g. [5]) is
given by

In
OLxn

X(t) = [0pxn IL]Xc () |: (6)

XTI = FAFZ, (7)
whereF is the(N + L) x (N + L? discrete Fourier transform
matrix withF; = \/Nl—_i_Lexp(_pjij ) andA is a diagonal matrix

formed by the discrete Fourier transform of the first row of the
matrix X7 i.e.

A= dianFT([mt_N_L+1 . l’g]))

One possibility is to stop right here approximatin®., +
X (t)XT(t) by a Toeplitz matrix and using e.g. the Levinson al-
gorithm [5] to find (YR., + X(¢t)XZ(t))Te(t). For the case of
L < N this approach would give a satisfactory computational
complexity Q((N + L) log, (N + L)) + O(L?)). This algorithm
will be referred to as ALGOL1 in the simulation study where it is
used as a reference for validation of the following approximations.
However, the complexity of the Levinson algorithm is not in
all cases acceptable and we proceed to find a simpler approximate
algorithm. As shown in Appendix, the vectgrcan alternatively

be expressed as
(x|

X [01,><1\JIL]]‘.-“|H)]L F |:

OnxL
I,

g(t)

] (YR, + X()XT(t))  (14)

e(t)

We now approximate the input signal correlation matrix by a Toeplitz
matrix R, ~ X (t)X* (t) and define a cyclic extension of the sum
of the correlation matrice®.., satisfying

0N><1 :|

YR, + X()XT(t) # YRy + Ry = [00xnIL]Re. [ O’i’:L ] )

Assuming that, < N + 1, the first row ofR., obeys even DFT

symmetry and hence it can be decomposed as
R. = FYDF = FDF”, (15)

whereD is a diagonal matrix with discrete Fourier transformed

first row of R, on the main diagonal. The main diagonalfis

real and symmetric by construction. The equation (14) can now be

rewritten as

In the case of real valued signals the transpose and Hermitian trans-

pose ofX, are the same and, hen®I = FAFF = FEARF
andX, = FAFFH = FEAF,
Substituting (6) and (7) into (4) and (5) we obtain

In
Orxn

e(t) = y(t) — [0uxn LLJF7 AF [

] h(t) (8)

h(t+1)

h(t) + p[InOn ) JFP AT F

|

Defining the frequency response vector of the unknown sys-

tem as
] h(t)

] (YR, + X ()X (t)) e(t) (11)

9)

OnxL

X I

] (YR, + XXT)te(t).

In

OLxn (10)

f(t)=F [
and introducing vectog(t) given by

_ OnxL
g(t) =F [ I

we obtain

y(t) — [0nxn IL]JF7 A£(t)

e(t) (12)

f(t+1) = £(t) + pF [ ijN ] [InONx]FT AT g(t). (13)

Onx1

g(t) = (KDK)'F [ o ] : (16)
where
K=F [ OI;L“ ] [0« NI ]FY

can be seen as a window matrix. It is a right—cyclic matrix with
elements of the first row given by

1 —jw(2N + L — 1) sin(wL/2)
K(l,n) =
(1,m) N+L™P ( 2 sin(w/2) ’
andw = 1?,1’2 which corresponds to a rectangular window in

the time domain. Using (16) in (13) would still result in an al-
gorithm with relatively high computational complexity and some
more approximations are desirable. A particularly simple algo-
rithm can be obtained approximatirl§ by an identity matrix.

In fact, this approximation results in an algorithm very similar to
the self-orthogonalizing FDAF [9] with signal power at frequency
bins (which is used to normalize the step sizes at respective fre-
quencies) replaced by the weighted sum of signal and measure-
ment noise powers.

Up to now we have assumed that the measurement noise cor-
relation matrix,R,, is known. In practice this is often not the case
andR, has to be estimated. In voice echo cancellation applica-
tions, it is natural to initialize the estimate witfJI, whereo? is
some expected noise power. Note that in some applications, it may



INITIALIZATION

f= O(NtL)x1
P, =02In.r
P, =c’lnyr

. ALGOlandALGO2
FOR EACH NEW BLOCK OF 10 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
L INPUT SAMPLES: )

A= dianFT([mt_N_L+1 e xf]))
e(t) = y(t) — [0L><N) IL]FHAf(t)
Onx1
c(t)=F [ e(t) ]
If Tr (AAF) > th then compute:
P, =3P, + (1 — B)AAF

ALGO1 and ALGO2
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g(t) = D'e(t)
f(t +1) = £(t) + pF OIN [InOnx]FZ AP g(t) Fig_ure 1: Results with stationary signals. a) learning curves; b)
LxN weight errors.

Else compute:
P, = 5P, + (1 — B)diag(c)diag(c)”

) process generated Qym SNR is approximately
Table 1: The proposed algorithm (ALGO2). 0dB. The true impulse response is a 64 taps FIR filter with flat fre-

guency response and coefficients distributed uniformly in the in-
terval[—1/128,1/128]. N = 64, L = 64, u = 0.04, 3 = 0.99,
be possible to obtain a better initial estimate during the initializa- 4 = 128. As the signals are stationary, the measurement noise
tion phase. The estimate can then be refreshed during the r‘@“U“’igpectrum is estimated first (this time is not shown in the Figure
pauses in speech i.e. while(TeA™) is larger than some thresh- above) and then used in the adaptive algorithm.
old, ¢h . This procedure does not have any significant impactto  The curves corresponding to ALGO1 are not distinguishable
the computational complexity as the coefficients should not be up- from these of ALGO2 which indicates that the approximations

dated when the input signal power is low anyway [7]. Obviously have been reasonably good. Both of the algorithms outperform
one can updat® directly in the frequency domain instead of first he FDAF.

updatingR.. and then computing the DFT.
The equations above can be applied every sample or once per a

block of samples. In this paper we have chosen to apply them once3.2. Measured signals

every block of L samples. This implies a lower computational

complexiy for the price of. samples delay and somewnat siower (12 1% S U BECCTECEE 2 B0 B 2 8 SO B
initial convergence. The final algorithm (ALGO?2) is outlined in = pp : phone pro ’
Figure 2 presents the learning curves (averaged in time using an
Table 1. AN . ; -
exponential window) of one typical simulation. The= 256 tap
echo impulse response identified in a Volvo 940 with two people
3. SIMULATION RESULTS sitting on the front seat of the car is usdd= 256, 4 = 0.04, 3 =
) . . . ) ) 0.99, v = 128. P, is estimated on-line. A female speech signal
A simulation study is conducted with the aim of comparing the s generating the echo which is then corrupted by a noise recorded
performances of ALGO1, ALGO2 with each other and with that jn 3 moving car. The sampling rate is 8000 Hz so the curves in

of FDAF [9]. Another aim for the study is to evaluate the perfor- the Figure 2 correspond to a one minute time interval. The echo

mance of the algorithms with speech signals. power is lower than the noise power most of the time but as the
signals are concentrated in different frequency bands, the echo is
3.1. Stationary signals clearly audible before the adaptive processing. FDAF improves the

. . . . . ... situation but the echo remains audible after the processing. After
Simulations with stationary signals are used to evaluate the validity the initial convergence, the residual echo of the proposed algorithm
of approximations made while going from ALGO1to ALGOZ and ;g hardly audible in the noise.

to compare the performance of both of them to that of FDAF. In the Figure 3 shows the power spectra computed using samples
context of this paper, stationarity of signals means that the statisti05394000 to 410000 from Figure 2. It can be seen that the echo

of the S|g_nals QO not_depend on time f1)1_> 0'. signal power is above the measurement noise power at most of the
A typical S|mulat|<_)n resultis shown in Flgure 1,_Where the up- frequencies. Processing by FDAF attenuates echo but the residual
per p2lot shows learning curves of the algorithms '.E['(e(t). N echo power remains above measurement noise power at several
v(#))"] and hthezlower plot shows the corresponding weight er- frequencies. Finally, processing by ALGO2 reduces the residual
rors, E[%]- The curves are ensemble averages over 200 echo power below the measurement noise power at all the frequen-
independent tri?Is. Input signal is an AR process generated bycies and, hence, the masking effects of human perception make the

Measurement noise is an AR  echo inaudible.
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Echo and measurement noise
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Figure 2: Results with measured signals. Upper: powers
noise and echo; Middle: residual echo power of FDAF; Lower:
residual echo power of ALGO2.

4. CONCLUSIONS

A novel adaptive algorithm has been derived by minimizing a BLUE

criterion function and using eigenproperties of cyclic matrices.

From several ways of cyclic extension of signal matrices the one

leading to algorithms similar to the classical frequency domain

adaptive filter has been used. The good performance of the pro-

posed algorithm has been demonstrated by simulations.
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6. APPENDIX

Consider the equation
Rz =e,

whereR. = 7R, + XX7 is a nonnegative definitd x L matrix
andz ande are L vectors. The latter is clearly equivalent to

oy ][]

which can be rewritten as

Onxr
R

On OnxeL H Onx1 | _ Onx1
Plo e et e ]
As by (11)
Onx1
s=r | ]
we may write
Ony OnxL H f Onx1
_ x X
o= (o ") e[ ]

which is equivalent to (14).



