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ABSTRACT

The problem of incorporating partial knowledge of measurement
noise into a frequency domain adaptive filtering scheme is ad-
dressed.The proposed algorithm is obtained by minimizing a BLUE
criterion function using the stochastic gradient method and then
switching over to the frequency domain to reduce the computa-
tional complexity. The performance of the algorithm in the situa-
tions of colored measurement noise is demonstrated by means of
simulations using stationary as well as speech signals.

1. INTRODUCTION

Most of the existing adaptive algorithms are designed to minimize
in some sense the error signal power or some estimate of it [3].
This approach implicitly assumes that the measurement noise is
white or absent, an assumption which may or may not be satisfied
in practice. The assumption is likely to be satisfied if the mea-
surement noise is dominated by thermal and quantization noises.
On the other hand in the applications like voice echo cancellation
the measurement noise mainly consist of background sounds in a
room and the assumption of whiteness can easily be violated.

In this paper a best linear unbiased estimate (BLUE) criterion
function is used as the target function in the design of an adaptive
algorithm. By this approach the color of the measurement noise
can be accounted for in the algorithm and a better performance
can be expected.

Some earlier work in a similar direction can be found in [4]
and [6], where the measurement noise is assumed to be an autore-
gressive (AR) process. It is then proposed to apply a whitening
filter to the residual signal before it is fed back to the coefficient
updates. In [6] it is assumed that the proper whitening filter is
knowna priori while an adaptive whitening is considered in [4].

The approach taken in this paper differs from these of [4]
and [6] in several ways. First, we do not assume any particular
model for the measurement noise (it is, though, assumed that a
correlation matrix of reasonable size describes the noise properties
adequately). Second, a frequency domain algorithm is developed
in this paper. Third, a variant of the BLUE criterion known for
its good numerical properties [8] is minimized here. Fourth, the
way of obtaining information concerning the measurement noise
is somewhat intermediate to these of [4] and [6]. More specifi-
cally, as the main focus in this paper is on the voice echo cancella-
tion applications, the noise correlation can be estimated during the
natural pauses in speech.

In the following the italic, bold face lower case and bold face
upper case letters are used for scalars, column vectors and matrices

respectively. SuperscriptsT ,H andy denote transpose, Hermitian
transpose and Moore–Penrose pseudo–inverse.I is the identity
matrix and0 is matrix of all zeros.

2. DERIVATION

Consider the criterion function

V = (Xh� y)T (
Rv +XX
T )y(Xh� y); (1)

whereh is theN vector of unknown filter coefficients,
 is a pos-
itive constant,X is theM �N matrix of the input signal samples
X = [x(t) : : :x(t�N + 1)] with x(t) = [xt�M+1; : : : ; xt]

T .
This definition ofX is perhaps not the most consequent one but it
leads to the frequency domain algorithms which show strong sim-
ilarities with the classical overlap–save frequency domain adap-
tive filter (FDAF) algorithms described in [1, 3, 9]. The vector
y = Xh + v is theM vector of observed signal samples and
v is theM vector of measurement noise with symmetric Toeplitz
covariance matrixRv .

Derivative of the criterion function with respect to the un-
known vectorh reads

@V

@h
= 2[XT (
Rv +XX

T )yXh� 2XT (
Rv +XX
T )yy

= �2XT (
Rv +XX
T )ye; (2)

wheree = y�Xh. The filter coefficient estimate is thus

ĥ = (XT (
Rv +XX
T )yX)�1XT (
Rv +XX

T )yy: (3)

In a way similar to that used in [8] pp. 89–90 it can be shown
that (3) is the BLUE ofh for the case of possibly singularRv.
It is further argued in [8] that this estimate (for the case
 = 1)
has better numerical properties than the more traditional BLUE
resulting from minimization of(Xh� y)TR�1

v (Xh� y) which
is used in [4].

Next, let us build a gradient algorithm minimizing (1) as

e(t) = y(t)�X(t)ĥ(t) (4)

ĥ(t+ 1) = ĥ(t) + �XT (t)(
Rv +X(t)XT (t))ye(t): (5)

In the above equations the length of the entire signal,M has been
replaced by a block length,L < M in all corresponding matrix
dimensions. Note, that in the case of whitev, the algorithm coin-
cides with the relaxed and regularized form of the affine projection
algorithm [2] with the regularization parameter proportional to the
measurement noise variance.



In this paper we are, however, interested in building a fre-
quency domain algorithm so we proceed defining an(N + L) �
(N + L) cyclically extended input signal matrix

Xc(t) = cycl([xt�N�L+1 xt xt�1 : : : xt�N�L+2])

=

2
6666664

xt�N�L+1 xt : : : xt�N�L+2

xt�N�L+2 xt�N�L+1 : : : xt�N�L+3

: : :
xt�L xt�L+1 : : : xt�L�1
xt�L+1 xt�L : : : xt�L�2

: : :
xt xt�1 : : : xt�N�L+1

3
7777775

Note, that this is just one particular cyclic extension of several pos-
sible. The advantage of this one is that it leads to intuitively well
understandable algorithms. The same extension was used in [1].
The original input signal matrixX(t) appears in the lower left
corner ofXc(t) and consequently

X(t) = [0L�N IL]Xc(t)

�
IN
0L�N

�
(6)

The matrixXc(t) is right–cyclic by construction and so isXT
c (t).

The eigendecomposition of a right–cyclic matrix (see e.g. [5]) is
given by

X
T
c = F�F

H ; (7)

whereF is the(N + L) � (N + L) discrete Fourier transform
matrix withFkl =

1p
N+L

exp(�j2�kl
N+L

) and� is a diagonal matrix
formed by the discrete Fourier transform of the first row of the
matrixXT

c i.e.

� = diag(DFT([xt�N�L+1 : : : xt])):

In the case of real valued signals the transpose and Hermitian trans-
pose ofXc are the same and, hence,XT

c = F�FH = FH�HF

andXc = F�HFH = FH�F.
Substituting (6) and (7) into (4) and (5) we obtain

e(t) = y(t)� [0L�N IL]F
H
�F

�
IN
0L�N

�
ĥ(t) (8)

ĥ(t+ 1) = ĥ(t) + �[IN0N�L)]F
H
�
H
F (9)

�

�
0N�L
IL

�
(
Rv +XX

T )ye(t):

Defining the frequency response vector of the unknown sys-
tem as

f̂ (t) = F

�
IN

0L�N

�
ĥ(t) (10)

and introducing vectorg(t) given by

g(t) = F

�
0N�L
IL

�
(
Rv +X(t)XT (t))ye(t) (11)

we obtain

e(t) = y(t)� [0L�N IL]F
H
�f̂(t) (12)

f̂ (t+ 1) = f̂(t) + �F

�
IN
0L�N

�
[IN0N�L]F

H
�
H
g(t): (13)

One possibility is to stop right here approximating
Rv +
X(t)XT (t) by a Toeplitz matrix and using e.g. the Levinson al-
gorithm [5] to find (
Rv + X(t)XT (t))ye(t). For the case of
L � N this approach would give a satisfactory computational
complexity (O((N +L) log2(N +L))+O(L2)). This algorithm
will be referred to as ALGO1 in the simulation study where it is
used as a reference for validation of the following approximations.

However, the complexity of the Levinson algorithm is not in
all cases acceptable and we proceed to find a simpler approximate
algorithm. As shown in Appendix, the vectorg can alternatively
be expressed as

g(t) =

�
F

�
0N�L
IL

�
(
Rv +X(t)XT (t)) (14)

� [0L�N IL]F
H
�y
F

�
0N�1
e(t)

�
:

We now approximate the input signal correlation matrix by a Toeplitz
matrixRx � X(t)XT (t) and define a cyclic extension of the sum
of the correlation matrices,Rc, satisfying


Rv +X(t)XT (t) � 
Rv +Rx = [0L�N IL]Rc

�
0N�L
IL

�
:

Assuming thatL � N + 1, the first row ofRc, obeys even DFT
symmetry and hence it can be decomposed as

Rc = F
H
DF = FDF

H ; (15)

whereD is a diagonal matrix with discrete Fourier transformed
first row ofRc on the main diagonal. The main diagonal ofD is
real and symmetric by construction. The equation (14) can now be
rewritten as

g(t) = (KDK)yF

�
0N�1
e(t)

�
; (16)

where

K = F

�
0N�L
IL

�
[0L�N IL]F

H

can be seen as a window matrix. It is a right–cyclic matrix with
elements of the first row given by

K(1; n) =
1

N + L
exp

�
�j!(2N + L� 1)

2

�
sin(!L=2)

sin(!=2)
;

and! = 2�n
N+L

, which corresponds to a rectangular window in
the time domain. Using (16) in (13) would still result in an al-
gorithm with relatively high computational complexity and some
more approximations are desirable. A particularly simple algo-
rithm can be obtained approximatingK by an identity matrix.
In fact, this approximation results in an algorithm very similar to
the self–orthogonalizing FDAF [9] with signal power at frequency
bins (which is used to normalize the step sizes at respective fre-
quencies) replaced by the weighted sum of signal and measure-
ment noise powers.

Up to now we have assumed that the measurement noise cor-
relation matrix,Rv , is known. In practice this is often not the case
andRv has to be estimated. In voice echo cancellation applica-
tions, it is natural to initialize the estimate with�2vI, where�2v is
some expected noise power. Note that in some applications, it may



INITIALIZATION

f̂ = 0(N+L)�1
Px = �2xIN+L

Pv = �2vIN+L

FOR EACH NEW BLOCK OF
L INPUT SAMPLES:

� = diag(DFT([xt�N�L+1 : : : xt]))

e(t) = y(t)� [0L�N) IL]F
H�f̂(t)

c(t) = F

�
0N�1
e(t)

�

If Tr(��H) > th then compute:
Px = �Px + (1� �)��H

D = Px + 
Pv

g(t) = Dyc(t)

f̂(t+ 1) = f̂ (t) + �F

�
IN

0L�N

�
[IN0N�L]FH�Hg(t)

Else compute:
Pv = �Pv + (1� �)diag(c)diag(c)H

Table 1: The proposed algorithm (ALGO2).

be possible to obtain a better initial estimate during the initializa-
tion phase. The estimate can then be refreshed during the natural
pauses in speech i.e. while Tr(��H) is larger than some thresh-
old, th . This procedure does not have any significant impact to
the computational complexity as the coefficients should not be up-
dated when the input signal power is low anyway [7]. Obviously
one can updateD directly in the frequency domain instead of first
updatingRc and then computing the DFT.

The equations above can be applied every sample or once per a
block of samples. In this paper we have chosen to apply them once
every block ofL samples. This implies a lower computational
complexity for the price ofL samples delay and somewhat slower
initial convergence. The final algorithm (ALGO2) is outlined in
Table 1.

3. SIMULATION RESULTS

A simulation study is conducted with the aim of comparing the
performances of ALGO1, ALGO2 with each other and with that
of FDAF [9]. Another aim for the study is to evaluate the perfor-
mance of the algorithms with speech signals.

3.1. Stationary signals

Simulations with stationary signals are used to evaluate the validity
of approximations made while going from ALGO1 to ALGO2 and
to compare the performance of both of them to that of FDAF. In the
context of this paper, stationarity of signals means that the statistics
of the signals do not depend on time fort > 0.

A typical simulation result is shown in Figure 1, where the up-
per plot shows learning curves of the algorithms i.e.E[(e(t) �
v(t))2] and the lower plot shows the corresponding weight er-

rors,E[ kh�ĥ(t)k
2

khk2 ]. The curves are ensemble averages over 200
independent trials. Input signal is an AR process generated by

1
1+0:7z�1�0:1z�2+0:1z�3+0:01z�4

. Measurement noise is an AR
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Figure 1: Results with stationary signals. a) learning curves; b)
weight errors.

process generated by 1
1�0:93z�1+0:01z�2

. SNR is approximately
0dB. The true impulse response is a 64 taps FIR filter with flat fre-
quency response and coefficients distributed uniformly in the in-
terval [�1=128; 1=128]. N = 64, L = 64, � = 0:04, � = 0:99,

 = 128. As the signals are stationary, the measurement noise
spectrum is estimated first (this time is not shown in the Figure
above) and then used in the adaptive algorithm.

The curves corresponding to ALGO1 are not distinguishable
from these of ALGO2 which indicates that the approximations
have been reasonably good. Both of the algorithms outperform
the FDAF.

3.2. Measured signals

Here we study the performance of ALGO2 in the acoustic echo
cancellation application for the car hands-free telephone problem.
Figure 2 presents the learning curves (averaged in time using an
exponential window) of one typical simulation. TheN = 256 tap
echo impulse response identified in a Volvo 940 with two people
sitting on the front seat of the car is used.L = 256, � = 0:04, � =
0:99, 
 = 128. Pv is estimated on–line. A female speech signal
is generating the echo which is then corrupted by a noise recorded
in a moving car. The sampling rate is 8000 Hz so the curves in
the Figure 2 correspond to a one minute time interval. The echo
power is lower than the noise power most of the time but as the
signals are concentrated in different frequency bands, the echo is
clearly audible before the adaptive processing. FDAF improves the
situation but the echo remains audible after the processing. After
the initial convergence, the residual echo of the proposed algorithm
is hardly audible in the noise.

Figure 3 shows the power spectra computed using samples
394000 to 410000 from Figure 2. It can be seen that the echo
signal power is above the measurement noise power at most of the
frequencies. Processing by FDAF attenuates echo but the residual
echo power remains above measurement noise power at several
frequencies. Finally, processing by ALGO2 reduces the residual
echo power below the measurement noise power at all the frequen-
cies and, hence, the masking effects of human perception make the
echo inaudible.
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Figure 2: Results with measured signals. Upper: powers of car
noise and echo; Middle: residual echo power of FDAF; Lower:
residual echo power of ALGO2.

4. CONCLUSIONS

A novel adaptive algorithm has been derived by minimizing a BLUE
criterion function and using eigenproperties of cyclic matrices.
From several ways of cyclic extension of signal matrices the one
leading to algorithms similar to the classical frequency domain
adaptive filter has been used. The good performance of the pro-
posed algorithm has been demonstrated by simulations.
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6. APPENDIX

Consider the equation
Rz = e;

whereR = 
Rv +XXT is a nonnegative definiteL� L matrix
andz ande areL vectors. The latter is clearly equivalent to�

0N 0N�L
0L�N R

��
0N�1
z

�
=

�
0N�1
e

�
;

which can be rewritten as

F

�
0N 0N�L
0L�N R

�
F
H
F

�
0N�1
z

�
= F

�
0N�1
e

�
:

As by (11)

g = F

�
0N�1
z

�

we may write

g =

�
F

�
0N 0N�L
0L�N R

�
F
H

�y
F

�
0N�1
e

�
;

which is equivalent to (14).


