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ABSTRACT

In this paper the effective bandwidths of stable distribu-
tions are studied. Effective bandwidths are being heavily
promoted as the most appropriate method for call admis-
sion control (CAC) and resource allocation within ATM net-
works. Recent work in teletraffic modelling has suggested
that models based on stable distributionsprovide an efficient
mechanism for capturing the long range dependence and in-
finite variance associated with teletraffic data (the Joseph
and Noah effects; see [1]). This has potentially serious im-
plications for effective bandwidths and we show how the ef-
fective bandwidth of such data is theoretically infinite. We
then present two approximate methods for estimating the
effective bandwidth of data based on stable distribution.

1. INTRODUCTION

The emergence of Broadband-ISDN networks has led to the
development of the Asynchronous Transfer Mode; a net-
working paradigm capable of switching both time and loss
sensitive services simultaneously. There is a need for re-
source allocation via a CAC scheme. A prerequisite of this
is an accurate statistical characterisation of the traffic likely
to be found on such networks and the impact of such traffic
on proposed CAC schemes. This paper considers the im-
pact of infinite variance processes on the effective band-
width measure. The paper is structured as follows. Initially
we introduce the effective bandwidth and show how it can
be used in CAC. We then show the analytical result that the
effective bandwidth measure of almost all stable distribu-
tions is infinite for realistic loss coefficients. However we
go on to consider the practical implications and from this
suggest two methods of estimating adapted forms of the ef-
fective bandwidth. Finally we present some simulation res-
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ults which show that at present online estimation techniques
work for infinite variance processes and that our adapted
analytical estimates tend to be biased below. We conclude
by suggesting why this is the case and identify how it can
be corrected.

2. EFFECTIVE BANDWIDTHS

The effective bandwidth of a VBR source is a value that lies
somewhere between its mean and peak transmission rates
and is related to the network performance by a loss coef-
ficient [2]. Work reported in [3] and [4] suggest that they
have potential for CAC on ATM.

However this measure is affected by the correlation struc-
ture of the source and a loss parameter that is chosen to
match the QoS demands of that source. If the source is then
serviced at its effective bandwidth it will conform to the
QoS constraints imposed. In addition if several sources are
serviced simultaneously at one switch and all are serviced
at their effective bandwidths, then their QOS demands will
not be violated [5].
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Figure 1: A single server queue.A[i] is a discrete arrival
process,c is the service rate,B is the buffer size andQ[i] is
the size of the queue in the buffer.

We can state this more formally. Consider the single
server queue in Figure 1. The VBR video service is a dis-
crete time stochastic arrival process,A[i], andQ[i] is the
queue size of the buffer at time-sloti. If the queue is ser-
viced at a constant rate,c then the queue-length at any time-



slot can be calculated using the recursion

Q[i] = (Q[i� 1] +A[i]� c; 0)+; (1)

where(a; b)+ is defined as the maximum out ofa and b.
Now define the scaled cumulant generating function

�(�) = lim
n!1

1

n
logE[exp (�(A[1] + � � �+ A[n]))]: (2)

If certain assumptions about the arrival process [5] (i.e. it
is stationary and mixing) and the stability of the queue (i.e.
E(A[i]) < c) are met then we can say

lim
B!1

1

B
logP (Q[i] > B) = ���; (3)

where�� = supremumf� > 0 : �(�) < �cg. We then
define the effective bandwidth of the arrival process,

�(�) =
�(�)

�
: (4)

Exact expressions for the effective bandwidth are not avail-
able for realistic traffic sources. Several studies have been
published which suggest that effective bandwidths have the
potential to be applied to CAC schemes. For recent results
on measurement based effective bandwidth estimation for
CAC see the paper by Gibbens and Kelly [6].

3. THE EFFECTIVE BANDWIDTH OF STABLE
DISTRIBUTIONS

In this section we consider the effective bandwidths of stable
distributions and stable models [7]. The first result is dis-
heartening as it proves that all stable distributions (apart
from the Gaussian) have an infinite effective bandwidth for
all positive loss coefficients. However we then go on to dis-
cuss the practical implications of this result and suggest that
for any real-world scenario this result will not occur. We ar-
gue that truncated stable distributions are more realistic and
we investigate the effective bandwidths of these.

3.1. The infinite moment generating function

Recall from Section 2 that the effective bandwidth of an ar-
rival process,A[i], can be determined from

�(�) = lim
n!1

1

n
logE[exp (�(A[1] + � � �+ A[n]))]: (5)

ButE[exp (�(A[1] + � � �+ A[n]))] is merely an expression
for the moment generating function of the arrival process
which can also be expressed as

M (�) =

Z 1

�1
f(x):e�xdx: (6)

f(x) is the pdf of the arrival process. If this is stable then we
know thatf(x) decays asymptotically in accordance with
some power law,

lim
jxj!1

f(x;�; �) = C(�; �)jxj��: (7)

Therefore the integral in (6) consists of a term that grows
exponentially inx (for all � > 0) and one that decays in ac-
cordance with a power law. If the asymptotic tail behaviour
in (7) comes into effect over the rangesx � l andx � u

(l � u) then

M (�;�; �) = [

Z l

�1
C(�; �)jxj��:e�xdx

+

Z 1

u

C(�; �)jxj��:e�xdx

+

Z u

l

f(x):e�xdx]: (8)

It is possible to show that the second term on the RHS
of (8) is infinite for� > 0. We can therefore conclude that
the effective bandwidth for all realistic values of the loss
coefficient will be infinite.

3.2. The adapted moment generating function

At first sight the result in the previous section is disheart-
ening since it suggests that if we attempt to estimate the ef-
fective bandwidth of any stable process then the result will
be infinite. However if we consider a real world scenario
we know that it is possible to model teletraffic with a stable
model. In fact the result in the previous section is due to
the fact that the moment generating function considers the
entire probability space. In reality some form of truncation
will occur because (i) negative arrivals are never permitted
and (ii) the network will have some upper bound on its max-
imum transfer rate.

In order to investigate the growth of the moment gener-
ating function we need to rewrite (6) in a slightly different
form

M (�; T ;�; �) =

Z T

�T
e�xf(x;�; �)dx: (9)

The moment generating function has been limited by the
valueT > 0 (hence equation (6) can not be considered a
true moment generating function, we will use the term ad-
apted moment generating function to distinguish it from (6))
and we have included the stable parameters� and�. So by
calculating the pdf of a stable distribution with character-
istic exponent� and skew� we can findM (�; T ;�; �) over
a range ofT .

In fact it is possible to obtain an exact expression for the
adapted moment generating function in the cases where an



expression for the pdf exists. In the case when� = 2 an
expression for the pdf is known and we can write

M (�; T; 2; 0) = e
�
2

2

1p
2�

Z T��

�T��
e
x
2

2 dx: (10)

Using the fact that�(z) = 1p
2�

R z
�1 e

x
2

2 dx and�(�z) =
1� �(z) we can write

M (�; T; 2; 0) = e
�
2

2 (2�(T � �) � 1): (11)

We use the above expression in the next two subsections
to compare with the approximate techniques for calculating
the adapted moment generating function.

3.2.1. Fourier transform approximation to the pdf

The most obvious way to obtain an approximation of the pdf
of a stable distribution is to take the inverse Fourier trans-
form (IFT) of a sample of the characteristic function [7].
By suitably selecting the IFT size and the distance between
the IFT points it is possible to generate a pdf approximation
over any range ofx. In Figure 2 the approximate pdf and
adapted moment generating function are plotted for three
values of� and0 < T � 10.
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Figure 2:The approximate pdf and adapted moment gener-
ating function for� = 0:0001 and�=1.0, 1.5 and 2.0 using
the IFT. The exact values for the� = 2 case are also given.

3.2.2. Asymptotic expansion approximation to the pdf

Another pdf approximation technique is that of asymptotic
expansion of the power series [7]. A S�S pdf can be ap-
proximated by

f(x; �; 0) =
1

�x

1X
k=1

(�1)k

K!
�

�
2k + 1

�

�
x2k (12)

for 1 � � � 2. Several extensions to this technique can
be employed to increase the accuracy and reduce rounding
errors. We approximated the pdf and adapted moment gen-
erating function for the same�, � andT as for the tech-
nique in Section 3.2.1. A comparison between these results
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Figure 3:The approximate pdf and adapted moment gener-
ating function for� = 0:0001 and�=1.0, 1.5 and 2.0 using
asymptotic expansion. The exact values for the� = 2 case
is also given.

and those in Section 3.2.1 are in very good agreement (to
within 1%). It would seem reasonable to suggest that the
differences in the results are due to inaccuracies in the ap-
proximation technique and that the estimates for the adjus-
ted moment generating function are approximately correct.

4. SIMULATION RESULTS

Now consider the Norros model with the Gaussian innova-
tions replaced by iid symmetric stable innovations,

A[i] = m+
p
amL�;0;0:5[i]: (13)

If the L�;0;0:5[i] process is truncated toT = 10 andm =
10, a = 1 then a semi-definite positive arrival process with
A[i] 2 (0; 20) is produced. We estimate�(�) for this pro-
cess using the technique in [4]. The result for� = 0:1 was
0.1018377, which suggests that the effective bandwidth is
10.18377. When we serviced the source at this rate we ob-
tained the buffer occupancy probability curve in Figure 4.

This is a positive result in that it suggests that the on-line
estimation techniques developed by Crosbyet al. can still
be applied to data with a stable innovation process. Now
we wish to determine whether we can use (9) to estimate
the effective bandwidth of the model. We applied the tech-
niques described in Sections 3.2.1 and 3.2.2 to estimate the
adjusted moment generating function with the parameters
� = 1:5, � = 0, T = 10 and� = 0:1. The results were
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Figure 4:The buffer occupancy curve for the truncated iid
stable Norros model serviced at 10.1838 bits/s with the ex-
pected value from effective bandwidth theory (dashed line).

1:005169 and1:003800 respectively. The effective band-
width can be estimated for the model using the following,

�(�) = 10+
1

�
logM(�; T; �; �): (14)

So the effective bandwidth estimates are10:0518and10:0379.
These may seem close to the10:18377 value but in fact the
system is very sensitive to�(�). This is obvious when we
plot the buffer occupancy plot for a service rate of10:0518
Figure 5
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Figure 5:The buffer occupancy curve for the truncated iid
stable Norros model serviced at 10.0518 bits/s with the ex-
pected value from effective bandwidth theory (dashed line).

So the adjusted moment generating function estimates
of the effective bandwidth are less than the true value for
the given loss figure.

5. CONCLUSIONS

The effective bandwidth of all stable distributions with� <

2 was shown to be infinite so we investigated the truncated
stable distribution. This was because such distributions are
more realistic in real world scenarios. However the analyt-
ical effective bandwidth estimates based on this technique
underestimated the required service rate. This is because of
a mismatch between the adapted moment generating func-
tion and the true pdf of the truncated stable distribution.
It may be possible to bias the adapted moment generat-
ing function to correct for this mismatch but this remains
an area of future work. The online estimation technique
worked well for the truncated stable model suggesting that
effective bandwidths still have a possible role to play in
CAC on ATM networks.
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