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ABSTRACT

A novel way of constructing integer coe�cient 2-channel
�lter banks is proposed. A set of relationships among
the �lter coe�cients is established in order to satisfy
linear phase, perfect reconstruction, and FIR proper-
ties. The remaining degrees of freedom are used to
obtain integer coe�cient values by maximizing a per-
formance evaluation function, namely subband coding
gain. The number of bits required to represent the sub-
band samples is kept low through e�cient nonlinear
implementation techniques. An octave-band frequency
partitioning where the number of stages is determined
according to the image size is employed. The subband
samples are then classi�ed into one out of a �nite num-
ber of classes, and each class is coded by an arithmetic
coder. The obtained compression ratios are encourag-
ing compared to the \best" results reported so far in
the literature.

1. INTRODUCTION

The application of nonunitary or biorthogonal �lter
banks (FBs) for lossy image compression has become
a well established area of research. However, integer
mapping from the image space to the subband domain
for lossless image compression is relatively new. New
applications such as telemedicine, seismic data pro-
cessing, and archiving (especially of medical images)
demand that e�cient lossless compression schemes be
developed to keep the bit rate low.

The lossless compression scheme can be decomposed
into two major blocks. First, the decomposition en-
gine transforms the image from the spatial domain to
the frequency domain. Second, an appropriate coding
strategy which can e�ciently utilize the subband sam-
ples' statistical characteristics is employed to reduce
the number of bits needed to exactly represent the im-
age.
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If a FB with oating point coe�cients is used, the
subband samples will be oating point numbers. There-
fore a mapping or a quantizer is needed to represent the
samples by integers. The integer subband samples and
the error oating point values must be coded. Another
possibility is to use a FB having integer �lter coe�-
cients which can map integer pixel values to integer
subband samples. Several wavelet-based integer coe�-
cient �lter banks (ICFBs) called binary �lters can be
found in [8]. Calderbank et al. [3] have shown that by
using lifting steps, every wavelet transform, or some
subclass of general FBs, can be used to map integer
input signals to integer subband samples.

Several coding and prediction techniques have been
proposed in the literature and we summarize some se-
lected schemes here. The linear predictive coding, also
used in the JPEG lossless standard [10], tends to be
an e�cient method. In [11], context modeling based
prediction, quantization of Markov states, and entropy
coding of the prediction errors is presented. A simple
and e�cient method by Said and Pearlman [7] uses a
nonlinear implementationof the Haar wavelet orWalsh-
Hadamard transform (WHT). A 3-stage octave-band
frequency partitioning is done by WHT. An interest-
ing issue is that they apply a predictor at each stage
along with the WHT. This tends to produce better re-
sults than applying the predictor after the frequency
partitioning. In [1], a coding scheme based on hier-
archical enumeration techniques is used. This coding
scheme has been shown to be very e�cient for lossless
coding of classi�cation tables at low bit rates.

In this paper, we propose several FBs having integer
�lter coe�cients and the perfect reconstruction prop-
erty. In addition to this, such FBs need to have good
energy compaction property which hopefully leads to
low entropy and therefore low bit rate. In order to
avoid large dynamic ranges in the subband domain, we
truncate subband samples in a way such that there ex-
ists a perfect reconstruction system. This means that
the �ltered values in the analysis FB will be truncated,



however, the �ltered samples undergo the same type of
nonlinear transform (truncation) in the synthesis FB
so that the reproduced image becomes identical to the
input image. To �nd the integer �lter coe�cients in the
FBs, a discrete optimization algorithm was adopted
where the ICFBs are optimized for subband coding
gain1. Finally, we use a coding algorithm based on
class-wise arithmetic coding of the subband samples as
proposed in [6].

2. FEATURES OF THE FILTER BANK

In the case of lossy subband image compression, the
best reported FBs are nonunitary with linear phase [2].
Hence, we enforce linear phase on the �lter coe�cients
as an additional constraint for our 2-channel ICFBs,
although a further motivation for this may be weak.

In order to guarantee PR through the encoding-
decoding system, we constrain the decimated analysis
and synthesis polyphase matrices,P(z) andQ(z), as [9]

Q(z) = z�kP�1(z); (1)

where k is an integer. Then, the reconstructed signal
becomes equal to a delayed version of the input signal.
If using FIR analysis �lters, FIR synthesis �lters are
obtained by setting appropriate terms to zero in the
determinant of P(z). For the 2-channel case, the �lter
relationships are: GLP (z) = HHP (�z) and GHP (z) =
�HLP (�z) where H(z) and G(z) denote analysis and
synthesis �lters, respectively, and LP and HP denote
\lowpass" and \highpass", respectively.

2.1. Gain Optimized Integer Coe�cient Filter

Banks

The constraints imposed on the 2-channel FB in the
previous section (PR and linear phase) leaves a number
of free parameters that can be used to enhance the
performance. Here the last parameters are �xed by
optimizing coding gain in the same way as for lossy
image compression systems [4]. A compact formula
to evaluate the generalized coding gain for nonunitary,
nonuniformFBs can be found in [5]. Since optimization
is conducted in a statistical manner, we include the
underlying statistics of an image by approximating it to
an AR(1) process with nearest sample correlation � =
0:95. Hence, the maximum 1-dimensional theoretical
coding gain is 10.11 dB [4].

1Subband coding gain may be a very confusing term in loss-
less coding because it is usually linked to quantization noise.
However, the coding gain is directly based on the spectral at-
ness measure which is totally determined by the signal's power
spectral density

Secondly, the �lter coe�cients are restricted to have
only integer values. Therefore the optimization be-
comes a constrained maximization problem. In the
optimization routine we apply a strategy where the
problem is recursively divided into two subproblems by
setting upper and lower bounds on the set-constrained
variables. The routine implements a 'branch-and-bound'
method on top of CONSTR and thus the Optimization
Toolbox in MATLAB is required. We list the following
selected cases of the gain optimized ICFBs below. The
list shows the analysis and synthesis lowpass �lter coef-
�cients and their respective number of zeros at z = �1.
Lowpass: Analysis (h

�

)/synthesis (g
�

) �lters:

� 4/4I ICFB
h4 = [�1; 4; 4;�1]=6 and g4 = [1; 4; 4; 1]=5.
1/1 zeros at z = �1. Gain = 6:16dB.

� 4/4II ICFB
h4 = [�1; 3; 3;�1]=4 and g4 = [1; 3; 3; 1]=4.
1/3 zeros at z = �1. Gain = 6:03 dB.

� 5/3I ICFB
h5 = [�1; 2; 6; 2;�1]=8 and g3 = [1; 2; 1]=2.
2/2 zeros at z = �1. Gain = 6:28 dB.

� 5/3II ICFB
h5 = [�1; 2; 4; 2;�1]=6 and g3 = [1; 2; 1]=2.
0/2 zeros at z = �1. Gain = 6:26 dB.

� 6/2 ICFB
h6 = [1;�1; 32; 32;�1;1]=32 and g2 = [1; 1]=2.
1/1 zeros at z = �1. Gain = 5:06 dB.

� 2/6 ICFB
h2 = [1; 1]=2 and g6 = [�1; 1; 8; 8; 1;�1]=8.
1/3 zeros at z = �1. Gain = 5:65 dB.

The selected wavelet-based ICFBs from [8] which
have been used in this paper are speci�ed below.

� 9/7 ICFB
h9 = [1; 0;�8; 16; 46; 16;�8;0;1]=64 and
g7 = [�1; 0; 9; 16; 9; 0;�1]=16:
2/4 zeros at z = �1. Calculated gain = 6:18 dB.

� 13/7 ICFB
h13 = [�1; 0; 18;�16;�63; 144;348;144;�63;�16;
18; 0;�1]=512 and g7 = [�1; 0; 9; 16;9;0;�1]=16:
4/4 zeros at z = �1. Calculated gain = 6:24 dB.

� 13/11 ICFB
h13 = [�3; 0; 22; 0;�125;256;724; 256;�125;0;
22; 0;�3]=1024 and
g11 = [3; 0;�25; 0;150; 256; 150;0;�25; 0;3]=256:
2/6 zeros at z = �1. Calculated gain = 6:10 dB.



� 17/11 ICFB
h17 = [3; 0;�52; 0; 348;�256;�972;2304; 5442;
2304;�972;�256;348;0;�52;0; 3]=8192 and
g11 = [3; 0;�25; 0;150;256; 150; 0;�25;0;3]=256:
4=6 zeros at z = �1, Calculated gain = 6:17 dB.

2.2. Implementation of Integer Coe�cient FBs

In the case of lossless compression, the above men-
tioned ICFBs need to be implemented in an e�cient
way. Otherwise, the dynamic range of the subband
samples becomes very large. This will lead to higher
entropy, and thus higher bit rate. Hence, it is very im-
portant to have a proper scaling at the analysis ICFB
which leads to an e�cient implementation having an
exact inverse at the synthesis ICFB. The implemen-
tation techniques for 9/7 and 2/2 ICFBs are given as
examples. Assume x and y are input pixel values and
subband samples, respectively.

The nonlinear analysis 9/7 ICFB algorithms are
given by

y2i+1 = x2i+1�b9(x2i+2+x2i)=16c+b(x2i+4+x2i�2)=16c;
(2)

y2i = x2i + b(y2i+1 + y2i�1)=4c: (3)

The synthesis 9/7 ICFB algorithms are

x2i = y2i � b(y2i+1 + y2i�1)=4c; (4)

x2i+1 = y2i+1+b9(x2i+2+x2i)=16c�b(x2i+4+x2i�2)=16c:
(5)

The implementation of 2/2 ICFB used in [7] is given
below.
Analysis 2/2 ICFB:

y2i = b(x2i + x2i+1)=2c; (6)

y2i+1 = x2i � x2i+1: (7)

Synthesis 2/2 ICFB:

x2i = y2i + b(y2i+1 + 1)=2c; (8)

x2i+1 = x2i � y2i+1: (9)

3. CLASS-WISE ARITHMETIC CODING

SCHEME

The coding scheme is based on class-wise arithmetic
coding of the subband samples, and is a modi�ed ex-
tension of the work in [6].

After octave-band frequency partitioning, the sub-
band samples at each decomposition level are classi�ed
into 4 classes based on the block energy2 to minimize

2The block energy is de�ned as the mean square value of the
samples in a block

the overall entropy. For the three highest frequency
subbands the block size is 8 � 8, for the subbands at
the next level 4�4 blocks are used, and at all other lev-
els, including the lowpass-lowpass frequency subband,
the block sizes equal 2� 2.

After classi�cation, all samples belonging to each
class at each level of decomposition is independently
encoded with an adaptive arithmetic coder using uni-
form initial alphabet probabilities.

The block classi�cation map is independently en-
coded at each decomposition level using �rst-order adap-
tive arithmetic encoding and transmitted as side infor-
mation. In addition the maximum symbol magnitude
of each class is transmitted to the decoder.

4. PRACTICAL CODING RESULTS

To evaluate the performance of our ICFBs we select �ve
ISO images given in Table 1. All of them have 256 gray
levels (i.e., 8 bits per pixel). The selected test images
possess rather di�erent frequency characteristics in the
subband domain, and include three natural images, an
aerial image, and a digitized �nger print.

We apply the ICFBs in a dyadic type of frequency
partitioning where the total number of stages depends
on the image size. The frequency partitioning is ter-
minated if the number of decomposition levels exceeds
six or if the horizontal or vertical size of the lowpass-
lowpass frequency band becomes less than 8.

The exact bit rates using di�erent ICFBs for the
selected images are given in Table 1. As the images
have di�erent information content and space and fre-
quency characteristics, a single ICFB is not necessarily
optimal for all cases. The simulation results show that
none of the tested FBs has the highest performance for
all images3.

From the simulation results it can be concluded that
the 2/2 ICFB is clearly inferior to the other FBs. Also
note that the 5/3I ICFB, which falls under the class
called maximum regular wavelet �lter banks, and the
5/3II ICFB, which does not possess the maximum regu-

larity property, perform quite close to each other. Fur-
thermore, for the particular �ve images tested, there is
also a tendency that the ICFBs with the longest �lters
on the average perform best. In particular, the 17/11
ICFB has the lowest total bit rate among the 8 ICFBs
considered.

3For the current implementation, the 2/6 ICFB does not per-
form well. This is due to the fact that it is not feasible to scale
down the lowpass samples in magnitude as derived in [8]. Thus,
the amplitudes of the lowpass subband samples increase at each
stage of decomposition. Consequently, the simulation results for
this FB are not listed in the table.



Table 1: Exact bit rates of the chosen ISO images.

Image Size Color plane ICFB

2/2 5/3I 5/3II 9/7 13/7 13/11 17/11

\Lenna" 512�512 Y 4.624 4.268 4.288 4.260 4.264 4.274 4.268

\Barbara" 512�512 Y 5.342 4.878 4.882 4.803 4.785 4.789 4.763

\Goldhill" 512�512 Y 5.083 4.790 4.809 4.803 4.805 4.826 4.821

\Aerial1" 1024�1024 G 6.271 5.561 5.588 5.417 5.425 5.394 5.395

\Finger" 512�512 Mono 5.789 5.500 5.520 5.465 5.466 5.472 5.465

5. CONCLUSIONS

We have presented a new class of ICFBs where the �l-
ter coe�cients are optimized for subband coding gain.
MATLAB software was used to �nd the gain optimized
�lter coe�cients in the discrete domain. By adopting
the same implementation techniques for ICFBs given
in [8], we showed that odd and even length ICFBs can
be implemented. The assumed coding strategy, which
is also used in lossy compressions, performs fairly well.
It is interesting to note that several FBs are in �rst
place for di�erent images. This indicates that optimal-
ity really depends on the image statistics. It may also
be debated whether coding gain optimization is a good
tool to minimize entropy, especially since the nonlin-
ear signal operation cannot be included in this type of
optimization.

The simple 5/3 ICFBs seem to be good candidates
for practical implementation as they perform well and
have low implementation complexity.

The performance of the coding scheme can be im-

proved by �nding better initial alphabet probabilities

for the arithmetic coder, as well as by exploiting the

statistical dependencies in the block classi�cation map

through conditional arithmetic coding of the classi�ca-

tion map entries [6]. Furthermore, a strategy of using

a predictor along with the ICFB, as mentioned in [7],

can be used to increase the performance.
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