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ABSTRACT
In this paper, we combine a context classification scheme with
adaptive prediction and entropy coding to produce an adaptive
lossless image coder. In this coder, we maximize the benefits of
adaptivity using both adaptive prediction and entropy coding. The
adaptive prediction is closely tied with the classification of con-
texts within the image. These contexts are defined with respect to
the local edge, texture or gradient characteristics as well as local
activity within small blocks of the image. For each context an op-
timal predictor is found which is used for the prediction of all pix-
els belonging to that particular context. Once the predicted values
have been removed from the original image, a clustering algorithm
is used to design a separate, optimal entropy coding scheme for en-
coding the prediction residual. Blocks of residual pixels are classi-
fied into a finite number of classes and members of each class are
encoded using the entropy coder designed for that particular class.
The combination of these two powerful techniques produces some
of the best lossless coding results reported so far.

1. INTRODUCTION

Image coding is an essential component of many digital transmis-
sion and storage systems. Generally speaking, image coding al-
gorithms can be divided into two categories: lossy and lossless.
Lossy compression techniques are more popular, but they lead to
coding distortions (or artifacts) which are not tolerable in certain
applications. In areas such as medical image coding and some
satellite imaging for instance, coding artifacts can have potentially
adverse consequencesor can corrupt data which has been obtained
at a great cost.

It is in these areas that lossless image coding methods are uti-
lized. Although lossless methods offer significantly lower com-
pression ratios, the fact that they preserve the original data has
made them indisposable. In recent years, a great deal of research
in image coding has concentrated on lossy methods. The develop-
ment of better transforms, quantizers and particularly adaptivity in
coders has resulted in significant advances in this area. An adap-
tive coder is able to adapt its workings to the local characteristics
within the different regions of an image.

Use of “context” [1] information to provide adaptivity has
demonstrated significant improvements in lossless compression re-
sults. However, many of these techniques are based on heuristics
and often do not fully exploit the gains offered by adaptive coding.
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A lossless image coder in its simplest form is implemented
using a fixed predictor and a fixed entropy coder. The predictor
makes a prediction for each pixel based on previously transmitted
values. The predicted values are then subtracted from the original
values, thus leaving the prediction error (or residual). An entropy
coder is then used to encode the residual signal.

Adaptivity can be provided by making the predictor and/or the
entropy coder adaptive. An adaptive predictor is able to adapt to
the characteristics of various textures or the direction of edges and
hence produce more accurate predictions. An adaptive entropy
coder, on the other hand, can adjust its workings to better match
the local statistics of an image and produce shorter-length codes.

2. CONTEXT CLASSIFICATION AND ADAPTIVE
PREDICTION

In this paper, we concentrate on one particular type of adaptive pre-
diction which is performed by switching among a finite number of
predictors. The decision of which predictor to use is made for each
pixel being encoded and is solely based on previously transmitted
pixel values.

The difficulty with this type of adaptive prediction schemes is
in the trade-off that exists between the number of predictors and
computational complexity. Since the appropriate predictor is often
selected using an exhaustive search [2] the computational com-
plexity is high and can only be reduced by limiting the number
of predictors. We have previously presented an optimal scheme
for the design of a small number of predictors [2]; however, this
scheme requires a computationally intensive design process.

The main performance obstacle in the path of the adaptive pre-
diction schemes mentioned above is the exhaustive search required
to map the local context from pixel domain to an appropriate pre-
dictor. The performance can be significantly improved if a faster
mapping is used. Such a mapping has been recently proposed
by Wu and Memmon [6] [5]. The coder named CALIC [5], has
many distinct features which contribute to its state-of-the-art per-
formance; however its most significant (and possibly understated)
feature is its Context Classification (or Quantization).

In CALIC, a fast method is used to classify the causal neigh-
borhood (context) of the pixel to be encoded into a finite number of
contexts. For each of the possible contexts, a bias value (a scalar)
is maintained which is added to the prediction made by a less so-
phisticated linear predictor in order to improve its performance.
CALIC assumes that the predictor is consistently repeating a sim-
ilar prediction error over the same context which can be compen-



sated for by adding the bias value.
In this paper, we take a slightly different approach and set out

to exploit this fast mapping to the fullest. We do so by using con-
text classification to select a linear predictor from a set of 1024
linear predictors. In this fashion, a pixel-by-pixel decision is made
as to which linear predictor should be used for predicting that par-
ticular pixel.

As done in [6], we define the prediction context of a pixelX

(see Fig. 1) as:

C(X) = (w;ww;nw;n; nn; ne; 2n� nn; 2w�ww): (1)

where each of the elements is the pixel in that direction (north,
south, ...) with respect to the pixel being encoded. The two values
2n � nn and2w � ww do not correspond to actual pixel values.
These values are calculated from the values of pixelsn,nn,w and
ww and are used to provide some measure of the gradient of inten-
sity within the context. For the purpose of notation, we also index
the values inC(X) such thatC1(X) = w, C2(X) = ww, ... ,
C8(X) = 2w �ww.

Next, we calculate the value� which is the mean of all pixels
in the context ofX:

� =
1

8

8X
i=1

Ci(X): (2)

Using the value� as a reference point, we are now in a position to
generate the 8-bit, binary stringS(X) which defines the shape or
the texture of the context:

S(X) = (S1(X); S2(X); :::;S8(X)): (3)

where,

Si(X) =

�
0; if Ci(X) � �,
1; otherwise.

; for i = 1; 2; :::;8: (4)

The 8-bit binary stringS(X), can also be interpreted as a binary
number ranging between 0 and 255. We use this number as an
index for the classification of the contextC(X). This index clas-
sifies each context according to its texture, gradient, edges and so
on. This type of classification is arguably the key factor in the suc-
cess of CALIC. However, rather than using the Gradient Adjusted
Predictor (GAP) used in CALIC to produce a reference value, we
have used the mean value� which is easier to calculate.

So far, the shape of the context has been classified into one
of 256 different shapes. However, since in calculatingS(X), all
magnitude information has been discarded and only sign informa-
tion has been retained,S(X) does not contain any information
about the strength of textures, steepness of gradients or the sharp-
ness of edges. In order to incorporate some of this information into
the context classification, we also calculate a separate index corre-
sponding to the level of activity (or energy) within the context.

To calculate the energy index, we first need to define some
measure of the energy within the context. We do so by calculating
the standard deviation of the values in each context:

� =

vuut1

8

8X
i=1

[Ci(X)� �]2; (5)

The standard deviation value� is then quantized into one of 4
levels using Lloyd-Max [8] scalar quantizer. This quantizer is

Xww w

nw n

nn

ne

Figure 1: The Prediction context of pixel X

designed once using data from a set of training images and is
kept for all future usage. In this fashion, the quantization index
q(X) 2 f1; 2; 3; 4g is found for the context of each pixel to be
predicted. This index provides the activity information which is
not contained in the indexS(X) calculated previously. The two
indices complement each other in terms of information and their
combination is used to produce an effective classification for each
context:

I(X) = q(X) S(X): (6)

In this way,I(X) becomes an integer between 0 and 1023 which
is used as the final classification index for each context. We de-
sign an optimum 4-th oder linear predictor for each of the 1024
contexts using either training data or the image to be encoded. In
coding, the context of each pixel is classified and then the appro-
priate predictor is used for the prediction of that particular pixel.
It should be noted that the predictors for each context are designed
using a Mean-Squared-Error (MSE) criterion.

3. THE MINIMUM-ENTROPY CLUSTERING
ALGORITHM

The adaptive prediction scheme described in the previous section,
decorrelates neighboring pixels in the image. However, upon in-
specting the residual image, it becomes clear that large values of
residuals (prediction error) tend to be confined to certain areas
while small residual values are also grouped together.

This non-uniformity in the local statistics of the areas within
the residual image can be exploited in entropy coding. This is done
through using multiple entropy coders,each of which is matched
to a particular type of region in the residual image. The ques-
tion remains as to how the different areas within the image can be
classified into different types and how the entropy coders can be
designed. To this end, we utilize the Minimum-Entropy Clustering
(MEC) [9] algorithm.

Our aim in the use of the Minimum-Entropy Clustering algo-
rithm is to classify blocks of samples and then encode the samples
in each block using a suitable entropy coder. The classification
and design of the entropy coders should be performed in a way
such that the overall entropy is minimized.

In order to design a coding system withN entropy coders, the
MEC algorithm operates as follows:

1. Initialization: N probability distribution functions (PDF’s)
are defined. These PDF’s will define the initial classes.

2. Minimum-Code-Length classification: Each block of sam-
plesB = (b0; b1; :::; bm�1) is classified as belonging to



classC such that the code length (after entropy coding)
L = �

P
m�1

i=0
log2 p(bijC) is minimized. This is simi-

lar to a nearest neighbor selection in VQ design.

3. Re-Estimate class statistics: Estimate the new class PDF’s.
This will ensure that the class statistics are matched to those
of the samples in that class and hence the entropy is further
reduced. This step is similar to a centroid calculation in VQ
design.

4. Iteration: Stop if a maximum number of iterations is reached
or the classes have converged. Otherwise, go to step 2.

Steps 2 and 3 form the core of the MEC algorithm. In each of
these two steps, the overall entropy is reduced. There are a number
of choices available for the initial classification. However, a bet-
ter definition of the initial classes can reduce the number of itera-
tions required. Since we wish to group together blocks with simi-
lar statistics, a reasonable choice for initial classification would be
classification based on the variance of the blocks. To do so, we
choose a classification similar to that used by Chen and Smith [3].
The variance of each block is estimated and the blocks are sorted
in the order of increasing (or decreasing) variance.

Using the sorted list,m� 1 threshold values (of variance) are
selected and used to classify the blocks intom classes. After this
classification, the class PDF’s are estimated and used to define the
initial classes.

This algorithm may be used in either a parametric or a non-
parametric form. In its parametric form, all distributions are mod-
eled as Generalized Gaussian (GG) distributions [4] whose shape
parameter and variance are estimated. In this case, step 3 of the
algorithm becomes a maximum-likelihood estimation of the shape
parameter and variance. The main disadvantage of using the para-
metric form of the MEC algorithm is the additional processing re-
quired in the calculation of probabilities (Step 2) and the parameter
estimation (Step 3).

In the non-parametric version of the MEC algorithm, frequency
tables are maintained for each of the classes. These frequency ta-
bles are updated in step 3 of the algorithm. After the MEC algo-
rithm has converged, these frequency tables are used to design the
entropy coders. It is for this reason that the frequency tables must
also be known at the decoder. In the parametric case, the proba-
bilities can be efficiently described to the decoder by transmitting
two parameters (shape and variance) per class.

In the non-parametric version, the frequency tables must be
explicitly transmitted. To reduce the amount of information, we
may take advantage of the symmetry in the frequency tables. One
half of each frequency table is quantized using 6-8 bits and then
transmitted to the decoder. If adaptive entropy coders are used, the
probability tables are quickly adapted to match the source statistics
and any mismatches caused by quantization rapidly disappear.

There is a trade-off between two versions of the MEC algo-
rithm mentioned above. The non-parametric version offers faster
execution times at the expense of added side-information; although
the parametric version is slower to run it is much more concise to
transmit its parameters. However, in terms of compression the two
versions of the MEC algorithm produce quite similar results. The
results in this paper have been obtained using the non-parametric
version of the MEC algorithm.

4. A CONTEXT CLASSIFICATION BASED IMAGE
CODER

In this section, we examine the design of the adaptive predictor
and the entropy coders used to encode the prediction residuals. As
mentioned in the previous section, the predictors can be designed
either for a training set of images or specifically for the image to be
encoded. There is a trade-off between the the two methods which
parallels the trade-offs experienced in quantizer design.

If a training set of images are used, the training is performed
off-line, however the predictors are not designed for the particu-
lar image and the predictors are slightly inferior in performance.
Alternatively, if the predictors are designed for the image to be
encoded, then some online training is required and the predictor
coefficients must be transmitted to the receiver.

In this paper, we examine both of the above-mentioned sce-
narios and compare their performance. The training algorithm for
the predictors is as follows:

1 For each pixel in the image (Training image, or im-
age to be encoded) the contextC(X) is found.

2 We calculate and remove average value� from the
pixels inC(X).

3 Take the sign of each of the mean removed values as
+=0 and -=1 to make an 8-bit binary stringS(X).

4 Calculate the standard deviation of the values inC(X).

5 Quantize the Standard deviation into one of 4 levels
to find energy indexq(X).

6 The pixel is classified as belonging to 1024 contexts
by combiningS(X) andq(X).

7 Update autocorrelation values for that context.

8 Return to Step 1 (until the entire image has been pro-
cessed)

The standard deviation values are quantized using a Lloyd-
Max quantizer [8]. Once the classification has been completed and
the autocorrelation values are finalized, the autocorrelation values
are used to design a 4th-order optimum linear predictor for each
context. If a particular context appears rarely or not at all (in the
training set), then it is allocated a trivial second order predictor
with two coefficients of 0.5.

It should also be noted that if the predictors are specifically
designed for the image to be encoded, their coefficients must be
transmitted as side information and contribute around 0.01 to 0.02
bpp to the overall bit-rate. All predictor coefficients are quantized
using 10 bits per predictor coefficient.

It is interesting to note that within a typical image, only 100-
300 of the possible 1024 contexts appear. This is a significant
advantage with respect to the transmission of the predictor coeffi-
cients, since only a small portion of the predictor coefficients need
to be transmitted.

The MEC algorithm was used to define a classification scheme
and design the entropy coders. Classification was made on blocks
of 8x8 pixels since it was experimentally found to produce the best
results. The 8x8 blocks were classified into 16 classes and hence
encoded using 16 different entropy coders. As mentioned previ-
ously, along with the classification scheme, the frequency tables
for the entropy coders must also be transmitted to the decoder.
For a 512x512 pixel image this results in an added bit-rate of 0.01
bpp. For a 256x256 pixel image this overhead increases to approx-
imately 0.04 bpp.



Coded Coding Method
Image CCBAC-TS CCBAC-SI CALIC [6]
barb 4.34 4.29 4.43
fruit 4.42 4.36 4.55
lena 3.94 3.90 4.05
man 4.38 4.35 4.43

goldhill 4.70 4.64 4.72

Table 1: A comparison of lossless compression results (quoted in
bpp)

5. RESULTS AND CONCLUSIONS

The coding results are listed in Table 1. The Context Classification
Based Adaptive Coder trained on a Training Set is referred to as
CCBAC-TS and the coder trained on the Specific Image is referred
to as CCBAC-SI. A set of ten images, excluding the training set
was used for training the CCBAC-TS. The values quoted in the
table are based on actual file sizes and include all overheads.

The results obtained from CALIC [6], were also provided for
comparison. From Table 1, it is clear that both proposed meth-
ods significantly outperform CALIC which is considered to be the
state-of-the-art in lossless image coding.

As expected, the image specific training algorithm CCBAC-SI
outperforms the pre-trained predictors used in CCBAC-TS. What
is surprising however, is the small difference between the two sets
of results. This suggests that in many cases, the pre-trained predic-
tors may be advantageous, since they require no “online” training.

The use of “off-line” training (using a training set of images),
is even more appropriate when the coder is being used on satellite
or medical images. For instance, if the coder is going to be used in
encoding X-ray images, then the predictors can be trained using a
suite of X-ray images.

Both of the tested coders outperform CALIC. We must, how-
ever, acknowledgethe increased computational complexity of both
coders compared to CALIC. Work is currently in progress toward
further optimizing the speed of the presented algorithms.

The prediction scheme presented in this paper, demonstrates
the advantages of using multiple predictors and the fast context
classification scheme presented. The fact that the context classi-
fication scheme does not use an exhaustive search allows a large
number of contexts to be utilized. The combination of this type
of prediction with an adaptive entropy coding scheme such as the
MEC algorithm was shown to produce some of the best results
obtained in image coding to date.
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