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Abstract

In this work, we evaluated the e�ectiveness of syn-
thetic aperture radar (SAR) target detection algo-
rithms that consist of any number of combinations of
three statistics which include two-parameter CFAR,
variance, and extended fractal features. The per-
formance of these algorithms were tested at various
threshold settings over the public domain MSTAR
database. This database contains one foot reso-
lution X-band SAR imagery. Receiver-operating-
characteristic (ROC) curves were generated for the
seven resulting algorithms. The results indicate that
the CFAR statistic is the least e�ective detection
statistic.

1 Introduction
Automatic target detection/recognition (ATD/R)

systems are required to detect and identify many
di�erent types of targets by processing over large
amounts of image data. These systems should oper-
ate in near real-time where the ATR system can com-
pletely analyze an image before the next image can be
formed by the sensor of choice. Many ATD/R systems
are divided into three processing stages to lower the
data throughput at the �nal recognition stage [5]. The
three stages of a general ATD/R algorithm consists of
a focus of attention (FOA) algorithm (or �rst level de-
tection) to �nd hot spots in the image, a second level
detection to remove false alarms due to clutter, such
as trees and buildings, and a �nal recognition stage to
identify and classify the targets that passed the ini-
tial two stages. The computational complexity of the
FOA stage must be low since all pixels of the image
must be screened at this stage.

In the past, researchers have exploited the fact that
the intensity of a target pixel is on average higher than
the intensity of the clutter background. Constant false
alarm rate (CFAR) detectors threshold a normalized
pixel intensity so that the false alarm rate remains
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constant over the entire scene even if clutter intensity
changes [4, 9]. Unfortunately, these CFAR detectors
do not exploit the fact that targets have spatial extents
which cover a number of pixels, and the distribution
of intensities di�er between target and clutter pixels.

Recently, researchers have considered the local dis-
tribution of intensities surrounding a pixel to develop
statistics that respond to texture. For example, Sub-
otic et al. uses di�erences in the phase information
from targets and clutter [10] and Pham et al. combines
a local variance feature and traditional grayscale fea-
tures [8]. In [3], we introduced features derived from
multiscale Hurst parameters which are able to detect
large target sized objects while ignoring the objects
too small to be a target.

In this paper, we test how detection algorithms,
which fuse any number of combinations of a CFAR,
variance, and extended fractal statistics, perform on
real data. Section 2 describes our skeleton detection
algorithm, and Section 3 reviews the three detection
statistics. The experimental results presented in Sec-
tion 4 are useful for a designer to determine which
combination of detection statistics should be imple-
mented in a real ATR/D system.

2 Generic Target Detection
In this paper, we want to compare the performance

of each detection statistic solely on the basis of in-
formation each statistic provides. To this end, we
tested the performance of a three stage generic detec-
tor. The �rst stage is the statistic calculation where
the value for any of the detection statistics described
in Section 3 are computed for each pixel in the image.
The second stage generates a binary image by labeling
pixels as targets if their statistic exceeds a threshold.
The second stage may also include morphology so that
if some detection clusters are too small, they are re-
moved by a opening operation. Morphology mitigates
false alarms by removing objects that are not target
size. Finally, the last stage clusters the detections in
the binary image into a number of centroids which
represent the center of regions of interest (ROI) which
are passed to later stages on the ATD/R system. If



more than one detection statistic is used in the detec-
tor, our algorithm fuses the detection statistic after
clustering, where the cluster centroid from one statis-
tic is retained only if it resides near a cluster centroid
extracted from the other statistics under investigation.

Note that morphological processing on the binary
image actually includes spatial reasoning to the detec-
tor. To make our initial comparison fair, we decided
to compare the statistics by implementing the generic
detection algorithm without using any morphological
operations. In future work, we plan to provide a sys-
tematic study of the optimal performance gain mor-
phological processing can provide for each detection
statistic.

3 Detection Statistics
The data requirements for the entire ATR algo-

rithm require that the computational complexity of
the FOA stage be as low as possible. Given an N �N
image I[m;n], the computational requirements to cal-
culate the detection statistic at each pixel should not
exceed O(N2) so that the complexity per a pixel is
independent of image size. E�cient implementation
of methods to compute the three detection statistics
under investigation do, in fact, require only O(N2) op-
erations. A description of each statistic follows below.

3.1 Two Parameter CFAR

The two parameter CFAR detection statistic has
been used for many years as a detection statistic in an
ATR system [5]. This CFAR statistic assumes the sur-
rounding clutter grayscales follow a Gaussian distribu-
tion. Then, the pixel intensity I[m;n] is normalized
to keep false alarms constant over the entire image by
�̂[m;n], i.e.

C[m;n] =
I[m;n]� �̂[m;n]

�̂[m;n]
: (1)

The mean �̂[m;n] and standard deviation �̂[m;n] for
the clutter are estimated over a one pixel wide square
annular window containing Nc elements surrounding
the pixel under test. The annular window is large
enough to surround the entire target.

3.2 Variance

The variance feature exploits the fact that the phys-
ical target of interest is composed of sharp edges which
cause a few strong corner re
ector returns inside tar-
get regions of the SAR image [8]. On the other hand,
natural clutter consists of a number of re
ecting sur-
faces which do not dominate the region. As a result,
the variance of grayscales for pixels representing a tar-
get are usually larger than those representing clutter
regions. Therefore, the variance statistic

V [m;n] = �̂2t [m;n]� �̂2c [m;n]; (2)

can indicate the pixel under test is a target when
V [m;n] is large. Note that similar to the CFAR case,
the clutter variance �̂2t [m;n] is computed over a one
cell wide square annular window containing Nc ele-
ments which surrounds the pixel. The target variance

�̂2c [m;n] is computed over aWt�Wt solid square win-
dow surrounding the pixel [m;n]. Wt is chosen to
correspond to the size of a typical target.

3.3 Extended Fractal Statistic

The extended fractal statistic is derived from mul-
tiscale Hurst parameters that generalize the Hurst pa-
rameter for fractional Brownian motion (fBm)[1]. The
multiscale Hurst parameter measures the hyperbolic
growth of the structure function at di�erent scales.
For an n�dimensional random process that satis�es
the extended self-similarity condition, i.e.

VAR[B(~t+~� )�B(~t)] = �2f(k~�k); 8~t; ~� 2 Rn; (3)

the structure function is f(�). For fBm, the structure
function is purely hyperbolic, i.e. f(l) = l2H where
H is the Hurst parameter. The Hurst parameter is
inversely proportional to the fractal dimension D =
n+1�H [6] so that roughness is inversely proportional
to the Hurst value. In general, the fractal dimension of
a process with stationary increments is determined by
the scaling behavior of f(l) as the incremental length
l goes to zero.

A digital image can be modeled as a 2-D process
satisfying (3) that is sampled every unit in both the
x� and y� direction. When the digital image is sub-
sampled by a factor of 2s, the best guess to obtain
the fractal dimension is made by measuring the scal-
ing behavior at the two �nest dyadic scales for the
subsampled image, i.e.

~Hs =
1

2
log2

�
f(2s+1)

f(2s)

�
: (4)

We refer to ~Hs as the multiscale Hurst parameter at
scale s. As illustrated in [1], the generalized param-
eters provide clues about the apparent roughness of
extended self-similar realizations at di�erent scales. If
the process happens to be fBm, then ~Hs = H for all
scales. In other words, fBm has constant roughness
over all scales.

To estimate multiscale parameter locally at each
pixel in an image I[m;m], the structure function is es-
timated in the x� and y�directions by bootstrapping
(3) so that

f�s [m;n] =
P

[m0;n0]2Wh [m;n]

��I[m0 + 2s�1; n0]

�I[m0 � 2s�1; n0]
��2 ; for � = fx; yg;

where Wh[m;n] is aWh�Wh window centered around
pixel [m;n]. Then, the directed multiscale Hurst val-
ues are simply,

~H�
s [m;n] =

1

2
log2

�
f�s+1[m;n]

f�s [m;n]

�
; � = fx; yg: (5)

For simplicity, we develop an almost rotational in-
variant detection statistic by averaging the x� and
y�directed Hurst value, ~Hs[m;n] = ( ~Hx

s [m;n] +
~Hy
s [m;n])=2:



It has been known that local Hurst estimates can
detect edges [2, 7]. The situation is identical for lo-
cal multiscale Hurst estimates. In fact, the utility of
the multiscale Hurst parameter as a detection statis-
tic is due to its edge response for objects of di�er-
ent sizes as discussed in [3]. At �ne scales, the local
multiscale Hurst values provide high responses at the
location of objects whose mean grayscales di�er from
the grayscales of the textured background in an image.
As the scale increases to the point that the extended
fractal features are computed using incremental lags
greater than the object size, the local multiscale Hurst
values go to zero. The size of the object can be deter-
mined by locating the scale where the Hurst estimates
make the transition from a large value to a smaller
value on par with the background values. Then, when
the scale becomes large enough to require that the
computation of the extended fractal features require
incremental lags greater than the size of the sliding
window, the Hurst response for an object becomes
negative. The more negative the response, the larger
the object. As a result, the negative of this extended
Hurst value for Wh = 65 and s = 5 is used as the
extended fractal statistic.

4 Experiments
We tested the seven resulting detection algorithms

on the public domain MSTAR database which con-
tains 2987 target chips and 100 pure clutter scenes cov-
ering approximately 10 square kilometers. The images
were collected at X-band wavelengths with a resolu-
tion of one foot in both range and azimuth dimensions.
In our experiments, we computed the probability of
detection by computing the percentage of target chips
which would pass the generic detection scheme at var-
ious operating points, i.e. threshold setting. Likewise,
we counted the number of detections that the generic
detection scheme provides over 100 clutter images at
various operating points to compute the false alarm
rate.

Figure 1 shows the plot of the receiver-operator-
characteristic (ROC) curves for each of the seven de-
tection methods. The ROC curve is the graph rep-
resenting the detection probability versus false alarm
rate at various operating points. Figure 1 indicates
that for single statistic detection, the extended frac-
tal feature provides the lowest false alarm rate at a
given probability of detection. On the other hand,
the CFAR statistic provides the highest false alarm
rate. The �gure also indicates that fusion of two statis-
tics enhance detection performance with the exception
that the extended fractal alone performed slightly bet-
ter than the CFAR-variance fused detector. The best
pair of statistics would be the variance and extended
fractal features. Finally, the �gure shows very little
performance gain in using all three statistics instead of
just using the variance and extended fractal features.
This indicates that the CFAR statistic adds very lit-
tle target information to the variance and extended
fractal features.

To further illustrate the performance of each detec-
tor, we ran each detector on a clutter image where
four targets were arti�cially embedded. Note that we
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Figure 1: ROC curves.

(a) (b)

Figure 2: SAR Images: (a) Original and (B) with
target markers.

set the thresholds of each statistics so that the prob-
ability of detection should be 0:8 based upon the re-
sults of Figure 1. The image contains a large number
of cultural clutter elements which can confuse tradi-
tional CFAR detectors. Figure 2 shows the image with
and without markers to indicate the target positions.
Figure 3 shows images whose grayscales are propor-
tional to the value of the detection statistics overlaid
with labels indicating detections. The CFAR statis-
tics provided the largest number of false alarms while
completely missing one target. The fusion results are
shown in Figure 4. This �gure shows that the CFAR-
variance still su�ers from many false alarms (20 to be
precise). The other fused statistics only generated 2
false alarms. Note that all detectors using the CFAR
statistic missed one target.

5 Conclusions
The results of this paper indicate that extended

fractal and variance detection statistics are superior
than CFAR statistics for detection. The most likely
reason for the lower CFAR performance is that the
other statistics incorporate spatial relationship of tar-
get intensities. In fact, the performance of the ex-
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Figure 3: Detection statistics with detection markers:
(a) CFAR, (b) variance, and (c) extended fractal.

(a) (b)

(c) (d)

Figure 4: Detections using fused statistics: (a) CFAR-
variance, (b) CFAR-extended fractal, (c) variance-
extended fractal, and (4) all three.

tended fractal statistic may be better than the vari-
ance method because the extended fractal statistic can
ignore single point-like scatterers due to cultural clut-
ter, such as buildings. We plan to run these exper-
iments on a more extensive database. We also plan
to use optimization techniques to �nd the best mor-
phological operations for each statistic to mitigate the
false alarms. The morphological operations should
add spatial information to the CFAR statistic. It
would be interesting to see if CFAR performance can
be enhanced through morphology to match the per-
formance of the other two statistics. Finally, we plan
to measure the ROC curves at varying levels of signal
to clutter ratios (SCRs).
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