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ABSTRACT

The selection of filter bank in wavelet compression is cru-
cial, affecting image quality and system design. Recently,
the biorthogonal coiflet (cooklet) family of wavelet filters
has been constructed [2] [4], and explicit frequency domain
formulae have been developed [2] in the Bernstein poly-
nomial basis. In this paper we use the Bernstein basis for
frequency domain design and construction of biorthogonal
nearly coiflet wavelet bases. In particular, we construct
a previously unpublishednearlycoiflet 17/11 biorthogonal
wavelet filter pair. Key filter quality evaluation metrics due
to Villasenor demonstrate this filter pair to be well suited
for image compression. Comparison is made to the 17/11
biorthogonal coiflet (cooklet), Villasenor 10/18, Odegard
9/7, and classical CDF 9/7 wavelet bases. Simulation results
with the SPIHT algorithm due to Said and Pearlman [3], and
with ourSRSFQ [7] [5], confirm that the new 17/11 wavelet
basis outperforms the others for still image compression.

1. INTRODUCTION

Much attention [6] has been given to the importance of wave-
let smoothness and regularity (particularly to vanishing wave-
let moments). Orthonormal filter banks, where the total
number of vanishing moments of the wavelet and scaling
function is maximum have been constructed by Daubechies
and were named coiflets (after R. Coifman) [1]. Recently,
biorthogonal filter banks where the total number of vanish-
ing moments of the wavelet and scaling function is maxi-
mum (biorthogonal coiflets or cooklets) have been studied
[2] [4]. In applications such as signal compression and de-
noising, it is desirable for the analysis function to have van-
ishing moments and regularity, and for the synthesis limit
functions to possess smoothness. By dividing vanishing
moments between the wavelet and scaling function, these
properties may be achieved. However, as noted by Vil-
lasenor [6], regularity and smoothness are not sufficient for
excellent image compression. Villasenor proposes the met-
rics of periodically shift-variant impulse response and step
response, in addition to regularity, for predicting wavelet
filter performance.
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Figure 1: One-level two-channel filter bank

In this paper we demonstrate that the Bernstein polyno-
mial basis proposed by Cooklev [2] for frequency domain
construction of the biorthogonal coiflets is also an excel-
lent design tool for the construction ofnearlycoiflet wavelet
bases for which the total number of vanishing moments are
nearly maximum. With the degree of freedom achieved
by sacrificing a vanishing moment, the frequency responses
of these new filters may be tailored to more closely match
that of well known high performance wavelet filters. By
matching the frequency response, the specific trade-off be-
tween step response and impulse response performance of
the matched filters is implicitly chosen for the new filters.

Finally, although the choice of filter and the associated
properties of the corresponding wavelet basis is sensitive to
the compression algorithm considered, by performing simu-
lations with two compression algorithms which differ widely
in most major aspects of quantization and bit allocation (Said
and Pearlman’s SPIHT [3] and ourSRSFQ (Stack-Run Space-
Frequency Quantization) [7] [5]) we demonstrate that the
nearlycoiflet 17/11 filters possess a robust form of smooth-
ness which enables excellent image compression performance
over a wide range of bit rates.

1.1. Biorthogonal Coiflet Wavelet Systems

Figure 1 shows a one level filter bank which is associated
with a biorthogonal wavelet expansion. Iteration on the low-
pass output will yield a multi-scale wavelet expansion.

The analysish0 and synthesisg0 filters are associated
with the scaling function�(x) and the dual~�(x), and the
wavelets!(x) and~!(x) by the following equations:
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Equations (1) and (2) converge to compactly supported
basis functions if both the following assertions hold:
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For odd length linear-phase biorthogonal perfect recon-
struction filter pairs,h0 having 2N+1 coefficients andh1
having 2N+3+4M coefficients, the following assertions hold:
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Cooklev has demonstrated that if we represent the low-
pass filter in Bernstein basis form:

H0(x) =
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xi(1�x)N�i; forx = sin2(!=2);

then from equations (5-7) the d(n) are necessarily

d(n) =

8<
:

1 : 0 � n < P
arbitrary : P � n � N �K

0 : N �K < n � N
:

To form the biorthogonal coiflets the total number of
vanishing moments of all limit functions is maximum, so
K+P=max=N+1 and
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For even length filters a Bernstein basis representation
of the low-pass filter can also be found (see [2]).

2. NEARLYCOIFLET BIORTHOGONAL
WAVELETS

Regularity is important for filter performance, but other fac-
tors also play a large role. Beginning with the biorthogonal
coiflet wavelet bases, we choose to sacrifice a zero ofH0 at
! = �. This will reduce the regularity of the low-pass ana-
lysis filter. However, the number of vanishing moments of

Table 1: Filter Bank Evaluation for Image Compression
Step Overshoot1 Impulse Resp.2

Filter Average Max Average Min

CDF 9/7 .002 .004 .142 .092
Odegard 9/7 .006 .010 .164 .107
Villasenor 18/10 .022 .034 .104 .088
Cooklet 17/11 .003 .005 .108 .088
NearlyCooklet 17/11 .007 .013 .125 .092

the analysis filters remains the same for this class ofnearly
coiflet biorthogonal wavelet filters. We may now tailor of
the frequency response characteristic of the filter; in partic-
ular, by increasing the magnitude of the highest non-zero
Bernstein basis the width of the low-pass filter’s pass-band
may be increased.

For example, the Villasenor 18/10 filter may be shown to
be a member of thenearlycoiflet family (even length filters)
for which the coefficients of the low-pass filter’s Bernstein
basis are d(n) = [1,1.02310534,1.78409122,0,0] (N=4, P=1,
K=2, M=2). The Bernstein basis coefficients for the CDF
9/7 pair are d(n) = [1,1.30689881,0,0] (N=3, P=1, K=2,
M=0). For the 17/11 biorthogonal coiflet (reversed cook-
let) they are d(n) = [1,1,1,0,0] (N=4, P=3, K=2, M=1).

Choosing the coefficients d(n)=[1,1,1.3,0,0,0] (N=4, P=2,
K=2, M=1) we obtain a newnearlycoiflet 17/11 filter pair.

The Villasenor 18/10 filters increase the biorthogonal
coiflet’s Bernstein coefficients increasing the pass-band of
the filter. The CDF 9/7 and 17/11 filters also exchange the
role of the analysis and synthesis filters [2].

Figure 2 shows the frequency responses for the low-pass
analysis filters. Note that the pass-band of thenearlycoiflet
17/11 pair is more closely matched to the pass-bands of the
CDF 9/7 and Villasenor 18/10 than is the pass-band of the
original cooklet. The 3 dB cut-off of the low-pass analy-
sis filter is a useful point to match as it well represents the
width of the filter pass-band. This matching will result in a
near (empirical) optimal trade-off between the step and the
impulse response performance of the new filters.

Expanding Villasenor’s filter metrics to include both min-
imum and average impulse response (as measure of the de-
tail preserving ability of the low pass filter), as well as both
maximum and average step response overshoot (as a mea-
sure of the filter ringing) we obtain Table 1.

Table 1 demonstrates that short filters do not necessarily
produce fewer ringing artifacts than longer filters. In partic-
ular, the first side-lobe overshoot of the Odegard 9/7 filters
is greater than that of the cooklet 17/11 filters and compa-
rable to that of the biorthogonalnearly coiflet filters. For
thenearlycoiflet filters the overshoot and impulse response
both increase as the last Bernstein coefficient is increased

1Fractional overshoot of the second side-lobe of the step response.
2Magnitude of the shift-variant impulse response.



Table 2: New 17/11NearlyCoiflet Filters
h0 0.8402696692, 0.4090630083, -0.1073757602,

-0.0621741791, 0.0533641923, 0.0073357876,
-0.0135767155, -0.0006712263, 0.0010068394

g0 0.7568252267, 0.4226067872, -0.0331456304,
-0.0814830079, 0.0082864076, 0.0124296114
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Figure 2: Analysis Low-Pass FiltersH0

in magnitude. This results in an improved impulse response
(the filters are able to retain more fine detail energy in lower
scale image subbands) at the expense of an increased over-
shoot artifact. Finding the ideal trade-off between the two
desirable filter characteristics of low overshoot and high im-
pulse response yields a filter pair which may perform well
for image compression.

3. SIMULATION RESULTS

The standard for assessment of image compression perfor-
mance is PSNR. To compare filter performance we use two
wavelet compressors [3] [7] at a wide variety of bit rates for
the popular test images Lena, Goldhill, and Barbara. The
quantization and compression methods for Said and Pearl-
man’s SPIHT (Set Partitioning in Hierarchical Trees) coder,
and for ourSRSFQ coder are completely different. The
characteristics of the test images are also quite distinct.

Table 3 shows in detail the superiority of the newnearly
coiflet 17/11 filters for image compression with SPIHT (fig-
ures in bold indicate the highest performing filters). Exper-
iments with ourSRSFQ algorithm also demonstrated the
consistent advantage of the new filters.

Figures 4-5 show the reconstructed compressed barbara
image for the SPIHT coding method at a compression ra-
tio of 32:1 for the CDF 9/7 and new 17/11 filters. Clearly
the new 17/11 filters retain more of the checkered pattern

Table 3: Image Compression Performance
Lena Barbara Goldhill

Filter Rate PSNR
(b/p) (dB)

CDF .125 31.09 24.59 27.52
9/7 .25 34.12 27.36 29.56

.50 37.20 31.18 32.22
1.0 40.38 36.15 35.85

Villasenor .125 31.22 24.58 27.45
18/10 filter .25 34.21 27.52 29.50

.50 37.27 31.44 32.18
1.0 40.39 36.60 35.87

Odegard .125 31.07 24.65 27.44
9/7 filter .25 34.09 27.38 29.49

.50 37.17 31.55 32.11
1.0 40.36 36.29 35.78

Cooklet .125 31.06 24.37 27.37
17/11 filter .25 34.08 27.14 29.40

.50 37.18 31.17 32.06
1.0 40.27 36.31 35.76

New .125 31.22 24.61 27.54
17/11 filter .25 34.23 27.56 29.60

.50 37.30 31.56 32.26
1.0 40.45 36.57 35.91

on the side of the tablecloth, a behaviour which we expect
from longer filters. The difference between the 17/11 and
18/10 filters is more difficult to demonstrate in hardcopy.
However, in high quality reproduction it is easily seen that
the new filters exhibit less ringing than the Villasenor 18/10
filters. In fact, close inspection of the figures shows in this
case the new 17/11 filters exhibit less visually disturbing
ringing than the CDF 9/7 filters. In effect, for still image
coding 1, the new filters allow the best of both worlds –
high frequencies are retained without significant ringing ar-
tifacts.

4. SUMMARY AND CONCLUSIONS

As our experiments indicate, biorthogonal coiflet filter banks
are very competitive for image compression applications. In
particular, they exhibit very little edge ringing. Thenearly
coiflet filters which we construct in this work, and in partic-
ular our new 17/11 filter pair, are clearly capable of achiev-
ing state-of-the art performance levels for lossy wavelet com-
pression of gray scale images.

Our design methodology is instructive for the design of
othernearlycoiflet filter banks. We retain an almost max-
imum number of vanishing moments for the filters. These
vanishing moments are known to be important for filter smooth-
ness and regularity which are well documented to be impor-

1For video coding even length filters are preferred [6].



tant for image compression. By sacrificing one vanishing
moment and more closely matching the frequency response
of the well known CDF 9/7 and Villasenor 18/10 filters,
superior image compression performance can be achieved
with short filters that exhibit little ringing and good energy
compaction of small details (impulses and thin lines).

We expect that this family ofnearlycoiflet filters will be
very strong competitors for incorporation in future wavelet
image and video compression standards.
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Figure 3: Original Barbara Image

Figure 4: Compressed 32:1 [SPIHT & CDF 9/7]

Figure 5: Compressed 32:1 [SPIHT &nearlycoiflet 17/11]


