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ABSTRACT

Weighted median filters (smoothers) have been shown to be anal-
ogous to normalized FIR linear filters constrained to have only
positive weights. In this paper, it is shown that much like the mean
is generalized to the rich class of linear FIR filters, the median
can be generalized to a richer class of weighted median (WM) fil-
ters admitting positive and negative weights. The generalization
follows naturaly and is surprisingly simple. In order to analyze
and design this class of WM filters, a new threshold decomposi-
tion theory admitting real-valued input signals is developed which,
in turn, is used to develop fast adaptive algorithms to optimally
design the real-valued filter coefficients. The new WM filter for-
mulation leads to significantly more powerful estimators capable of
effectively addressing a number of fundamental problems in signal
processing which could not adequately be addressed by prior WM
filter (smoother) structures.

1. INTRODUCTION

Weighted median filters (smoothers), introduced by Edgemore in
the context of least absolute regression over a hundred years ago
[1], have received considerable attention in signal processing re-
search over the last two decades [2, 3]. Although these structures
are widely known in the signal processing literature as weighted
median filters, for reasons that will become apparent shortly, we
will refer to these filters as weighted median smoothers. During
the last few years, the theory behind WM smoothers has been de-
veloping quite fast. It is often stated that there are many analogies
between WM smoothers and linear FIR filters. In this paper, how-
ever, we show that WM smoothers are highly constrained and that
they are significantly less powerful than linear FIR filters. In fact,
WM smoothers are equivalent to normalized weighted mean fil-
ters – a severely constrained subset of linear FIR filter. Admitting
only positive filter weights WM and normalized weighted mean
filters are, in essence, smoothers having “low-pass” type filtering
characteristics.

A large number of engineering applications require “band-
pass” or “high-pass” frequency filtering characteristics. Equal-
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ization, deconvolution, prediction, and beamforming are example
applications where filters having “band-pass” or “high-pass” char-
acteristics are of fundamental importance. Linear FIR equalizers
admitting only positive filter weights, for instance, would lead to
completely unacceptable results. Thus, it is not surprising that WM
smoothers admitting only positive weights lead to unacceptable re-
sults in a number of applications.

In this paper, based on fundamental principles of parameter
estimation, we define a new WM filtering structure that admits
positive and negative weights. The generalization follows natu-
rally and is surprisingly simple. As would be expected, WM filters
reduce to WM smoothers whenever the filter coefficients are con-
strained to be positive. In order to analyze the new WM filter class,
we first define a new threshold decomposition framework which
allows real-valued inputs and which allows negative sample weight-
ing. The new threshold decomposition architecture overcomes the
shortcomings associated with prior definitions. Through the use
of the new threshold decomposition architecture, an adaptive al-
gorithm is developed for optimizing the new MW filter structure
under the mean absolute error (MAE) criterion.

2. WEIGHTED MEDIAN FILTERS WITH REAL-VALUED
WEIGHTS

The sample median and sample mean have deep roots in statistical
estimation theory. In particular, they are the Maximum Likelihood
(ML) estimators of location derived from sets of independent and
identically distributed (i.i.d.) samples obeying the Laplacian and
Gaussian distributions, respectively. The sample mean and median
thus play an analogous role in location estimation. While the mean
is associated with the Gaussian distribution which often emerges
naturally in practice, the median is related to the Laplacian distri-
bution which has heavier tails and can often provide a better model
for impulsive-like processes.

The sample mean and median can be generalized by extending
the model of Maximum Likelihood estimation. Let the sample set
X1; � � � ; XN be independent but not identically distributed. In par-
ticular, assume the X 0

is obey the same distribution but assume that
their variance is not identical for all samples. Under the Gaussian
assumption, the Maximum Likelihood estimate of location in this
case can be shown to be the value � minimizing

G2(�) =

NX
i=1

1

�2i
(Xi � �)2; (1)



where �2i is the variance of the i0th sample in the set. The value �
minimizing (1) is the normalized weighted average

�� =

PN

i=1
Wi �XiPN

i=1
Wi

(2)

with Wi = 1=�2 > 0. Likewise, under the Laplacian model, the
Maximum Likelihood estimate of location minimizes the sum of
weighted absolute deviations

G1(�) =

NX
i=1

1

�2i
jXi � �j: (3)

The value ~� minimizing (3) is the weighted median originally
introduced over a hundred years ago by Edgemore [1] and defined
as

~� = MEDIAN(W1 �X1;W2 �X2; � � � ;WN �XN ) ; (4)

where Wi = 1=�2 > 0, and where � is the replication operator

defined as Wi �Xi =

Wi timesz }| {
Xi; Xi; � � � ; Xi. It should be noted that the

weights in (2) and (4) are contrained to take on non-negative values
due to their inverse relationship to the variances of the respective
observation samples.

Notably, the location parameter estimation problem just de-
scribed is related to the time-series filtering problem where the
output Y (n), at time n, can be thought of as an estimate of loca-
tion, and where X(n � N1); � � � ; X(n); � � � ; X(n +N2) are the
set of observation samples. Although these samples, in general,
exhibit temporal correlation, the independent but not identically
distributed model can be used to capture the mutual correlation.
This is possible by observing that the estimate Y (n) can rely more
on the sampleX(n) than on the other samples that are further away
in time. Thus, X(n) is more reliable than X(n� 1) or X(n+1),
which in turn may be more reliable thanX(n�2) orX(n+2), and
so on. By assigning different variances (reliabilities) to the inde-
pendent but not identically distributed location estimation model,
the temporal correlation used in time-series filtering is captured.
The weighting structures in (2) and (4) reflect the varying reliability
of the samples in the observation set.

From the filter structures described in (2) and (4), it can be
seen that the class of weighted median filters (smoothers), is equiv-
alent to the class of normalized weighted average filters. Since
the former filter class is severely constrained allowing only linear
combinations of positively weighted input samples, it follows that
weighted median filters (smoothers) are also severely limited in
their structure.

Much like the sample mean can be generalized to the rich class
of linear FIR filters, there must be a logical way to generalize the
median to an equivalently rich class of weighted median filters
that admit both positive and negative weights. We next show that
this is in fact possible. Perhaps the simplest approach to derive
the class of weighted median filters with real-valued weights is by
analogy. The sample mean �� = MEAN(X1; X2; � � � ; XN ) can
be generalized to the class of linear FIR filters as

� = MEAN(W1 �X1;W2 �X2; � � � ;WN �XN ) (5)

where Wi 2 R. In order to apply the analogy to the median filter
structure (5) must be written as

�� = MEAN(jW1j � sgn(W1)X1; � � � ; jWN j � sgn(Wn)XN )
(6)

where the sign of the weight affects the corresponding input sample
and the weighting is constrained to be non-negative. By analogy,
the class of weighted median filters admitting real-valued weights
emerges as

~� = MEDIAN(jW1j � sgn(W1)X1; � � � ; jWN j � sgn(Wn)XN ) ;
(7)

with Wi 2 R for i = 1; � � � ; N . Again, the weight signs are
uncoupled from the weight magnitude values and are merged with
the observation samples. The weight magnitudes play the equiva-
lent role of positive weights in the framework of weighted median
smoothers. It is simple to show that the weighted mean (normal-
ized) and the weighted median operations shown in (6) and (7)
respectively minimize G2(�) =

PN

i=1
jWij (sgn(Wi)Xi � �)2

and G1(�) =
PN

i=1
jWijjsgn(Wi)Xi � �j: While G2(�) is a

convex continuous function, G1(�) is a convex but piecewise lin-
ear function whose minima is guaranteed to be one of the “signed”
input samples (i.e. sign(Wi) Xi). The WM filter output for non–
integer weights can be determined as follows:

1. Calculate the threshold T0 = 1
2

PN

i=1
jWij.

2. Sort the “signed” observation samples sgn(Wi)Xi.

3. Sum the magnitude of the weights corresponding to the
sorted “signed” samples beginning with the maximum and
continuing down in order.

4. The output is the sample whose magnitude weight causes
the sum to become � T0.

The following example illustrates this procedure. Consider the
window size 5 WM filter defined by the real valued weights
[W1; � � � ;W5]

T = [0:1; 0:2; 0:3;�0:2; 0:1]T : The output for the
observation set [X1; � � � ; X5]

T = [�2; 2;�1; 3; 6]T is found as
follows. Summing the absolute weights gives the threshold T0 =
1
2

P5

i=1
jWij = 0:45. The “signed” observation samples, sorted

observation samples, their corresponding weight, and the partial
sum of weights (from each ordered sample to the maximum) are:

observation samples �2; 2; �1; 3; 6
corresponding weights 0:1; 0:2; 0:3; �0:2; 0:1

sorted signed samples �3; �2; �1; 2; 6
corresponding abs. weights 0:2; 0:1; 0:3; 0:2; 0:1
partial weight sums 0:9; 0:7; 0:6; 0:3; 0:1

Thus, the output is �1 since when starting from the right (maxi-
mum sample) and summing the weights, the threshold T0 = 0:45
is not reached until the weight associated with �1 is added. The
underlined sum value above indicates that this is the first sum
which meets or exceeds the threshold. The effect that negative
weights have on the weighted median operation is similar to the
effect that negative weights have on linear FIR filter outputs. Fig-
ure 1 illustrates this concept where G2(�) and G1(�), the cost
functions associated with linear FIR and weighted median filters
respectively, are plotted as a function of �. Recall that the output
of each filter is the value minimizing the cost function. The input
samples are again selected as [X1; � � � ; X5] = [�2; 2;�1; 3; 6]
and two sets of weights are used. The first set is [W1; � � � ;W5]
= [0:1; 0:2; 0:3; 0:2; 0:1] where all the coefficients are positive,
and the second set being = [0:1; 0:2; 0:3;�0:2; 0:1] where W4

has been changed, with respect to the first set of weights, from
0:2 to �0:2. Figure 1(a) shows the cost functions G2(�) of the
linear FIR filter for the two sets of filter weights. Notice that by



changing the sign of W4, we are effectively moving X4 to its new
location sign(W4)X4 = �3. This, in turn, pulls the minimum
of the cost function towards the relocated sample sign(W4)X4.
Negatively weighting X4 on G1(�) has a similar effect as shown
in Fig. 1(b). In this case, the minimum is pulled towards the new
location of sign(W4)X4. The minimum, however, occurs at one
of the samples sign(Wi)Xi.
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Figure 1: Effects of negative weighting on the cost functions
G2(�) and G1(�). The input samples are [X1; � � � ; X5]

T =
[�2; 2;�1; 3; 6]T which are filtered by the two set of weights
[0:1; 0:2; 0:3; 0:2; 0:1]T and [0:1; 0:2; 0:3;�0:2; 0:1]T .

3. THRESHOLD DECOMPOSITION FOR
REAL-VALUED SIGNALS

In this section we further extend threshold decomposition allow-
ing the decomposition of real-valued signals. This decomposi-
tion, in turn, can be used to analyze weighted median filters hav-
ing real-valued weights. Consider the set of real-valued samples
X1; � � � ; XN and define a WM filter by the corresponding real
valued weights W1; � � � ;WN . Decompose each sample Xi as

xqi = sign (Xi � q) (8)

where �1 < q <1, and where

sign (Xi � q) =

(
1 if Xi > q;
0 if Xi = q;
�1 if Xi < q:

(9)

Thus, each sample Xi is decomposed into an infinite set of binary
points taking values in [�1; 1] ; and a single point equal to 0 ob-
tained for Xi = q. It can be shown that the original real-valued
samples Xi can be perfectly reconstructed from the infinite set of
thresholded signals as

Xi =
1

2

Z
1

�1

xqi dq =
1

2

Z
1

�1

sign (Xi � q) dq: (10)

With this threshold decomposition, the WM filter operation can be
implemented as

�̂ = MED
�
jWij � sign (Wi)Xij

N
i=1

�
= MED

�
jWij �

1

2

Z
1

�1

sign [sign (Wi)Xi � q] dqjNi=1

�
:

The expression above represents the median operation of a set
of weighted integrals, each synthesizing a signed sample. Note
that the same result is obtained if the weighted median of these
functions, at each value of q, is taken first and the resultant signal
is integrated over its domain. Thus, the order of the integral and the
median operator can be interchanged without affecting the result
leading to

�̂ =
1

2

Z
1

�1

MED
�
jWij � sign [sign (Wi)Xi � q] jNi=1

�
dq:

In this representation, the “signed” samples play a fundamental
role; thus, we define the “signed” observation vector S as

S = [sign(W1)X1; � � � ; sign(WN)XN )]
T = [S1; � � � ; SN ]

T :

The threshold decomposed signed samples, in turn, form the vector
s
q defined as

s
q = [sign [sign(W1)X1 � q] ; � � � ; sign [sign(WN)XN � q]]T

= [sq1; s
q
2; � � � ; s

q
N ]

T : (11)

Letting Wa be the vector whose elements are the magnitude
weights, Wa = [jW1j; jW2j; � � � ; jWN j]

T , the WM filter oper-
ation can be expressed as

�̂ =
1

2

Z
1

�1

sign
�
W

T
a s

q
�
dq: (12)

The WM filter representation using the new threshold decomposi-
tion is compact although it may seem that the integral term may
be difficult to implement in practice. It is shown in [4] that the
expression in (12) can be simplified to

�̂ =
S(1) + S(N)

2
+

1

2

N�1X
i=1

�
S(i+1) � S(i)

�
sign

�
W

T
a s

S
+

(i)

�
:

The computation of WM filters with the new threshold decom-
position is efficient requiring only N � 1 threshold logic (sign)
operators, it allows the input signals to be arbitrary real-valued
signals, and it allows positive and negative filter weights.

4. OPTIMAL WEIGHTED MEDIAN FILTERING

In many applications it is desirable to design the weights of a
filter in some optimal fashion. In this section we develop adaptive
algorithms to find the optimal real-valued weights of WM filters.
We assume that the observed process fX(n)g is statistically related
to some desired process fD(n)g of interest. We assume that these
processes are jointly stationary. A window of width N slides
across the input process pointwise estimating the desired sequence.
The vector containing the N samples in the window at time n is
X(n) = [X1(n); X2(n); � � � ; XN (n)]

T . The running WM filter
output estimates the desired signal as

D̂(n) =MED
�
jWij � sign(Wi)Xi(n)j

N
i=1

�
;

where both the weights and samples take on real values. The goal
is to determine the weight values inW = [W1; � � � ;WN ]

T which



will minimize the estimation error. Under the Mean Absolute Error
(MAE) criterion, the cost to minimize is

J(W) = E
�
jD(n)� D̂(n)j

	
(13)

= E

�
1

2

����
Z
1

�1

sign(D � q)� sign
�
W

T
a s

q
�
dq

����
�
;

where the threshold decomposition representation of the signals
was used. The absolute value and integral operators can be inter-
changed since the integral acts on a strictly positive or a strictly
negative function. This results in

J(W) =
1

2

Z
1

�1

E
�
jsign(D � q)� sign

�
W

T
a s

q
�
j
	
dq

In [4] we develop an adaptive algorithm to minimize the above cost
function. The resultant fast LMA WM adaptive algorithm leads to
following recursion:

Wj(n+ 1) = Wj(n) + �
�
D(n)� D̂(n)

�
sign(Wj(n))

� sign
�
sign(Wj(n))Xj(n)� D̂(n)

�
;

for j = 1; � � � ; N: This algorithm is similar to that of Yin and
Neuvo’s [5] except that their algorithm is applicable to the design
of weighted median smoothers which do not admit negative weight
values thus a projection operator mapping all negative weights to
zero is needed in their update. Moreover, updates in Yin and
Neuvo’s algorithm contain thresholded signals at levels determined
by the sample order-statistics, not at the “signed” order statistics.

5. APPLICATIONS OF WM FILTERS WITH REAL
VALUED WEIGHTS

The added flexibility provided by negative weights in WM filters is
illustrated in this section. Consider the design of a “high-pass” WM
filter whose objective is to preserve a high frequency tone while
remove all low frequency terms. Figure 2(a) depicts a two-tone
signal with normalized frequencies of 0:04 and 0:4 Hz. Figure
2(b) shows the multi-tone signal filtered by a 28-tap linear FIR
filter designed by MATLAB’s fir1 function with a normalized cutoff
frequency 0:2 Hz. The fast adaptive LMA algorithm was used
to optimize a MW filter with 28 weights. The step size used in
all adaptive optimization experiments was 10�3. These weights,
in turn, were used to filter the multi-tone signal resulting in the
estimate shown in Fig. 2(c). The low-frequency components
have been clearly filtered out. If the linear FIR filter weights
are used with the WM filter, we obtain the output shown in Fig.
2(d). Next, Yin et. al’s fast adaptive LMA algorithm was used
to optimize a MW filter (smoother) with 28 (positive) weights.
The filtered signal attained with the optimized weights is shown in
Fig. 2(e). The weighted median smoother clearly fails to remove
the low frequency components as expected. The weighted median
smoother output closely resembles the input signal as it is the
closest output to the desired signal it can produce.

Having designed the various high-pass filters in a noiseless en-
vironment, we next test their performance on signals embedded in
noise. Stable noise with � = 1:4 was added to the two-tone signal.
Rather than training the various filters to this noisy environment,
we used the same filter coefficients as in the noise-free simulations.
Figure 2(f)-(i) illustrates the results. As expected the outputs of the
weighted median filter and smoother are not affected, whereas the
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(d)
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Figure 2: (a) Two-tone signal, outputs from (b) linear FIR filter,
(c) WM filter, (d) WM filter with linear FIR weights, (e) WM
smoother with positive weights, (f) two-tone signal in stable noise,
noisy signal filter with (g) linear FIR filter, (h) WM filter, (i) WM
smoother with positive weights.

Table 1: Mean Absolute Filtering Errors

filter noise free with stable noise
linear FIR 0.012 0.979
WMF with FIR weights 0.501 0.530
optimal WMF smoother 0.688 0.692
optimal WMF (fast alg.) 0.191 0.209

output of the linear filter is severely degraded as the linear high-
pass filter amplifies the high frequency noise. Table I summarizes
the MAE values attained by the various filters tested.

6. REFERENCES

[1] F. Y. Edgeworth, “A new method of reducing observations
relating to several quantities,” Phil. Mag. (Fifth Series), vol. 24,
1887.

[2] D. R. K. Brownrigg, “The weighted median filter,” Commun.
Assoc. Comput. Mach., vol. 27, Aug. 1984.

[3] L. Yin, R. Yang, M. Gabbouj, and Y. Neuvo, “Weighted median
filters: a tutorial,” IEEE Transactions on Circuits and Systems,
vol. 41, May 1996.

[4] G. R. Arce, “A generalized weighted median filter structure
admitting real-valued weights,” IEEE Transactions on Signal
Processing, June 1997. submitted.

[5] L. Yin and Y. Neuvo, “Fast adaptation and performance char-
acteristics of fir–wos hybrid filters,” IEEE Transactions on
Acoustics, Speech, and Signal Processing, vol. 42, July 1994.


