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ABSTRACT

Channel characteristics of practical code division mul-
tiple access (CDMA) systems are usually unknown and
di�cult to model accurately. Type-based receivers,
without assuming any a priori model, extract signals
successfully from background noise. In this paper, we
develop type-based receivers that address two major
issues in CDMA signal reception: multiple access in-
terference and multipath fading. We �rst present the
type-based receiver with interference suppression capa-
bility, assuming the knowledge of the code and timing
of the intended user only. We then show that equal-gain
combining (EGC) of type-based statistics is the asymp-
totically optimal technique for diversity empirical de-
tection. Compared with maximal ratio combining of
matched �lter outputs, the diversity receiver with EGC
of type-based statistics assumes less channel knowledge
and yields competitive detection performance in Gaus-
sian noise and better performance in Laplacian noise.

1. INTRODUCTION

In the wireless communication environment, where
channel modeling can be a real challenge, blind re-
ceivers and receivers based on training data provide at-
tractive alternatives to \clairvoyant" receivers. Specif-
ically, for the downlink (from base station to mobile)
of CDMA communications, the receiver has to extract
its intended user's signal and in doing so it must e�ec-
tively suppress the unknown interference from other
users and the unknown noise. The matched �lter
receiver has the simplest structure, but its perfor-
mance su�ers from the well-known near-far problem.
One of the blind receivers that have attracted much
attention recently{ the blind adaptive multiuser de-
tector (BAMD) [4] { implements the multiuser lin-
ear minimum mean squared error detector [7] through
multi-dimensional blind adaptation. Unfortunately,
the adaptation is slow and the signal-to-interference ra-
tio exhibits large variance even after adaptation.
We investigate the universal classi�cation theory [3]

and its induced asymptotically optimal detectors based
on empirically observed sequences. The basic idea of
universal classi�cation is to infer the underlying proba-
bilistic model of the source through training sequences,

without assuming any a priori models, and to classify
the test sequence based on the non-parametric model
inferences obtained. For digital communication sys-
tems using direct sequence spread spectrum (DS/SS),
the baseline type-based receiver yields competitive er-
ror performance with reasonable amount of training
data in additive white noise [5, 12]. In a CDMA system
with multiple access interference (MAI), however, such
a receiver requires extremely large signal-to-noise ratio
(SNR) for signal detection [6]. We propose a quan-
tizer design criterion for type-based receivers and im-
prove the baseline receiver through quantizer optimiza-
tion during training to achieve good MAI suppression
performance. The improved empirical receiver outper-
forms the matched �lter receiver and blind receivers in
the reasonable SNR region.
Another major issue in wireless communication is the

multipath fading e�ect. Diversity reception is one of
the most powerful techniques that combat fading ef-
fectively. Among linear combining schemes, maximal
ratio combining (MRC) of received signals from each
diversity branch achieves the maximal SNR and thus
sets the performance limit. For type-based detection,
we observed previously through simulations the per-
formance gain by MRC of multiple type-based statis-
tics [12]. We reexamine the empirical data based diver-
sity detection problem analytically in this paper and
show that the generalized likelihood ratio test (GLRT)
leads to equal-gain combining (EGC) of type-based
statistics as the asymptotically optimal scheme. We
compare the EGC diversity type-based receiver with
the MRC diversity matched �lters in both Gaussian
and Laplacian noise, and demonstrate the e�ectiveness
of type-based receivers in diversity reception.
By suppressing the MAI at each diversity branch in-

dividually and combating the fading through multiple-
branch EGC, the type-based receiver we propose pro-
vides a promising receiver structure for signal reception
in situations such as the wireless CDMA downlink.

2. BASELINE TYPE-BASED RECEIVER

Based on empirically observed sequences, a type is the
information theory term for the histogram estimate of
the underlying discrete probability function [1]. Denote

by bPx the type of sequence x (length-n) generated ac-



cording to P ; then bPx(x) = 1
n

Pn

j=1 I(x = xj), x 2 A,

a �nite alphabet. I(�) is the indicator function.
We brie
y explain the universal classi�cation theory

for discrete stationary Markov source [3] by a two i.i.d.
sources example. Given training sequences ti (length
N ) from sources i; i = 0; 1 respectively, and a test
sequence x (length n) to be classi�ed, the type-based
detector considers

Si =
N + n

n
H( bPfti;xg) � N

n
H( bPti); i = 0; 1;

where bPfti;xg = N bPti + n bPx
N + n

, and H(�) is the entropy

estimate. The decision is made by choosing the mini-
mum of the su�cient statistics S0 and S1. Type-based
detection is asymptotically optimal for detection based
on empirically observed sequences [3].
The application of type-based detection to DS/SS

signal reception was �rst studied in a very simple sce-
nario, BPSK signal reception in additive white noise [5].
The type-based receiver solves the binary hypothesis
testing problem (bit 0 or bit 1). The receiver uses train-
ing sequences from each hypothesis during preamble
reception to estimate the underlying probability dis-
tributions, and bit detection is done based on these
estimates upon the reception of n (the processing gain)
test chips. Figure 1 illustrates the receiver structure.
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Figure 1. Type-based receiver. We consider the BPSK signal-
ing and BPSK spreading scheme. The conventional chip matched
�lter output of the received signal is sampled at chip rate to ob-
tain a length-n vector r, the input to the type-based receiver.
The sequence r is �rst de-spread with the intended user's code
(say, c1) to get z = r:�c1 = [r(1)�c1(1); : : : ; r(n)�c1(n)], which
is then quantized into a �nite-sized alphabet to form a type. The
su�cient statistic Si obtained based on training types and test
types determines the bit decision.

3. IMPROVED TYPE-BASED RECEIVER

3.1. Optimization for Interference Suppression

In applying the type-based detection theory to com-
munications, the discrete source constraint requires a
front-end quantizer in the receiver because the com-
ponents of the received vector r have continuous values
and must be quantized before forming types. Although
we found that a simple pre-determined quantizer works
well in the noise-only environment [5, 12], extremely
large SNR per bit (about 40dB) is required in MAI
for the type-based receiver to outperform matched �l-
ter [6]. Since Markov representation for the intended
user is impossible due to the unknown interference,
the key step in type-based receivers is to reject MAI

via quantization. More sophisticated quantization op-
timization is necessary for the type-based receiver to
suppress MAI, especially when the number of quanti-
zation intervals is small.
Let pi; i = 0; 1 be the true probability distribution of

the received signal under bit 0 and bit 1 respectively,
and bPti ; i = 0; 1 be the corresponding type obtained
from the quantized training sequences. From the classic
binary hypothesis testing theory, Stein's lemma states
that the Neyman-Pearson criterion leads to detectors
such that if the error probability under hypothesis 1
is �xed then the error probability under hypothesis 0
decays exponentially with the test sequence length at
the rate of D(p1jjp0), the Kullback-Leibler (KL) dis-
tance between p1 and p0. For type-based detection,
the asymptotic error rate is closely related to KL dis-
tances [3]. Based on these results, and considering the
fact that bit 0 and bit 1 have equal importance in
communication systems, we set the criterion that the
optimal quantizer for type-based detection is the one
that achieves the best error rate under both hypothe-
ses. Mathematically, the optimal quantizer Q is given
by

argmax
Q

min(D(Q(p0)jjQ(p1)); D(Q(p1)jjQ(p0))):

Although a quantizer that maximizes an Ali-Silvey dis-
tance measure (KL distance, for example) of the quan-
tized distributions can always be chosen to be a so-
called likelihood ratio quantizer [11], the design of such
a quantizer requires a priori knowledge of the distribu-
tions. To be precise, our problem is

argmax
Q

min(D( bPt0 jj bPt1); D( bPt1 jj bPt0));
where the quantization is performed on training se-
quences rather than true distributions. Consider the
numerical optimization of the quantizer during the
training period. If we �x the number of quantization in-
tervals q, the quantizer optimization process is at most
q � 1 dimensional, since it is su�cient for the output
levels of the quantizer to be distinct letters as opposed
to values for types and thus only the input levels need
to be optimized. While q depends on power levels of
all users, we found that a small number is usually su�-
cient for the optimized quantizer to set its input levels
to mimic the the underlying distributions, and thus to
suppress MAI successfully.
We compare the performance of the above improved

type-based receiver with that of the matched �lter and
the BAMD1 in MAI plus additive noise. The spread-
ing codes are length-31 Gold codes with random shift

1The BAMD [4], which can be viewed as a blind adaptive im-
plementation of the multiuser LMMSE detector [7], aims at the
minimization of the mean squared error through an n (usually
bigger than q) dimensional optimization process. This detector
has many desirable properties and is expected to be among the
most likely candidates for practical application of multiuser de-
tection [9]. For performance analysis of BAMD, see also [8].



uniformly on [0; n� 1], and remain the same from bit
to bit. It should be pointed out that type-based re-
ceivers can cope with time-varying codes, such as the
long pseudo-noise (PN) sequence codes proposed in IS-
95, without any di�culty. All the K�1 interferers have
the same power, and a 1-D quantization optimization
is done with a 2K interval quantizer for the type-based
receiver (since the uniform quantizer with the best step
size is optimal in this case because of the interference
structure). The bit-error rate (BER) is obtained by
Monte-Carlo simulations after the adaptation or the
training period of 128 bits.
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Figure 2. A 3-user system is simulated in Gaussian noise. Each
interference power is 15 times as strong as the intended user.
BER of the intended user is plotted as a function of its SNR.
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Figure 3. Same interferencescenario as in �gure 2, but in Lapla-
cian noise. Generally speaking, the type-based receiver outper-
forms L2 receivers in non-Gaussian noise.

Consistent with our previous �ndings [5, 12] that the
type-based receiver performs better in non-Gaussian
noise, we found that it tracks the BAMD in Gaussian
noise and outperforms it in non-Gaussian noise (�gure
not included). The MAI rejection performance of our
receiver is superior both in the large SNR region (�g-
ure 2) and in non-Gaussian noise (�gure 3). Additional
results (�gure not included) show that the BER of the
type-based receiver is relatively insensitive to the num-
ber of interfering users and in near-far situations.

3.2. Diversity

In situations where multiple simultaneous receptions
of an intended user's signal are available, rake-like re-
ceivers that combine di�erent versions of the signal
can greatly improve performance [10]. For example,
space (or path) diversity techniques can be employed
to overcome the severe consequences of fading. Assume
the relative delays of each path (branch) have been ac-
quired, then the task is simply to seek the optimal com-
bining technique for synchronized multiple versions of
the signal for detection.
We posed the diversity problem in a soft hando� set-

ting, i.e., the simultaneous signal reception at multi-
ple base stations in [12] and simulated the MRC of
type-based statistics. While the MRC of received sig-
nals directly achieves the maximal combined SNR for
any linear combining schemes (e.g. see [2]), and conse-
quently, so does the MRC of the soft decisions of linear
detectors, such operation on soft decisions of non-linear
detectors (type-based statistics, for example) is solely
based on intuition. In this section, we obtain the com-
bining scheme that guarantees good performance by
deriving the asymptotically optimal detector based on
empirical data, when the multiple receptions are sta-
tistically independent.
Denote the unknown underlying probability distribu-

tions of the ith branch reception P (i)
0 when bit 0 is sent,

and P
(i)
1 when bit 1 is sent, where P

(i)
0 ; P

(i)
1 2 P, dis-

crete stationary Markov sources of known order. Again,
the bit detection is a binary-hypothesis testing prob-

lem. Given training sequences t(i)0 , t(i)1 (length N ) un-
der the two hypotheses respectively, and test sequence
x(i) (length n) from branch i, i = 1; : : : ; B, where B
is the number of multiple receptions, the generalized
likelihood ratio test (GLRT) considers

P0 = max
P
(i)
0 ;P

(i)
1

 Y
i

P
(i)
0 (r(i))

Y
i

P
(i)
0 (t

(i)
0 )
Y
i

P
(i)
1 (t

(i)
1 )

!
;

P1 = max
P
(i)
0 ;P

(i)
1

 Y
i

P
(i)
1 (r(i))

Y
i

P
(i)
0 (t

(i)
0 )
Y
i

P
(i)
1 (t

(i)
1 )

!
;

where i = 1; : : : ; B. Solving the GLRT by assum-
ing equal-probable hypotheses, we obtain the following
functions of training and test types

S0 =
BX
i=1

�
N + n

n
H( bP

ft
(i)
0 ;x(i)g

) �
N

n
H( bP

t
(i)
0
)

�
;

S1 =
BX
i=1

�
N + n

n
H( bP

ft
(i)
1 ;x(i)g

) �
N

n
H( bP

t
(i)
1
)

�
;

and the decision rule is to choose the smallest. Here,

the type bP
ft

(i)
1 ;x(i)g

is a linear combination of bP
t
(i)
j

and bPx(i) as in the single-branch case in section 2.
Compared with the single-branch decision rule, the



multiple-branch type-based receiver performs equal-
gain combining of type-based statistics obtained from
each single-branch type-based receiver.
The performance comparison of diversity reception

is shown below by a two-branch example in additive
white noise. In Gaussian noise, the MRC of matched
�lter outputs is optimal, and it sets the performance
limit in �gure 4. The EGC of type-based statistics is
only asymptotically optimal. It tracks the optimal per-
formance without assuming any channel model. The
performance of EGC of matched �lter outputs is much
worse, however, due to the di�erent characteristics of
the two branches. Thus, the type-based receiver is at
advantage where EGC is preferred to MRC2. In Lapla-
cian noise (�gure 5), as always, the type-based receiver
greatly outperforms matched �lter. At the BER of
10�3, type-based diversity receiver gains about 2dB
and 3dB over MRC and EGC of matched �lter out-
puts respectively.
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Figure 4. A 2-branch system is simulated in Gaussian noise.
The BER is plotted against the SNR of one branch, and the
other branch's SNR is 12dB worse. The results are based on 104

Monte-Carlo simulations.
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Figure 5. Same scenario as in �gure 4, but in Laplacian noise.
EGC of type-based statistics outperforms linear schemes.

2MRC weighs the reception at branch i by A(i)=(�(i))2, where
A(i) is the received signal amplitude, and (�(i))2 is the noise
power [2]. EGC does not require these channel knowledge.

4. CONCLUSION

Type-based receivers do not require any a priorimodel,
and yield impressive detection performance. We im-
proved the baseline type-based receiver through quan-
tizer optimization so that MAI is e�ectively suppressed.
EGC of type-based statistics yields the asymptotically
optimal diversity scheme for empirical data based de-
tection. Such multiple-branch reception is expected to
combat fading e�ectively. Note that the quantizer de-
sign is speci�c to each branch since each branch pro-
vides the type-based statistic through single-branch de-
tection independently. Thus, when MAI is present, the
quantization optimization process we presented applies
directly to multiple-branch reception. These two re-
sults together, by addressing the two major issues of
CDMA single-user signal reception, suggest a practical
receiver structure.
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