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ABSTRACT

Multi-resolution ESPRIT is an extension of the ESPRIT
direction �nding algorithm to antenna arrays with multiple
baselines. A short (half wavelength) baseline is necessary
to avoid aliasing, a long baseline is preferred for accuracy.
The MR-ESPRIT algorithm allows to combine both esti-
mates. The same algorithm can be used for multi-resolution
frequency estimation, by combining two di�erent sampling
frequencies. We show how this can be used to construct a
joint angle-frequency estimator.

1 INTRODUCTION

Since its derivation in 1983, the ESPRIT algorithm [1]
has been used for direction-of-arrival estimation, harmonic
analysis, frequency estimation, delay estimation, and com-
binations thereof. In essence, the algorithm makes use of
a single shift invariance structure present in the array re-
sponse vector a(�), where � = ej�, and � is a phase shift
to be estimated. In narrowband direction-of-arrival esti-
mation, the phase shift is due to the di�erence in arrival
times of the wavefront at the elements of an antenna array.
For a uniform linear array (ULA), it is well known that
a(�) = [1 � �2 � � �]T and � = 2��sin(�), where � is the
distance between the elements (in wavelengths), and � is
the angle of arrival measured with respect to the normal of
the array axis. A similar situation occurs in frequency esti-
mation where we have � = �2�fT . Here, T is the sampling
period and f is the frequency to be estimated.
In the above simple case (estimation of a single para-

meter), the accuracy of the estimate of sin(�) or f is di-
rectly proportional to 1

�
and 1

T
, respectively. Thus, it is

preferable to have a large baseline � or a large sampling
period T , so that we collect a large phase shift �. Un-
fortunately, however, we cannot collect more than a single
cycle, �� � � < �, because the inverse of the mapping
� ! � = ej� is ambiguous outside this range. To prevent
aliasing, we thus have to ensure that � � 1

2
wavelengths,

or T � 1
2
fmax, which is essentially Shannon's theorem in

space and time.
The idea behind multi-resolution parameter estimation is

to obtain two or more estimates of �: the �rst based on a
small baseline or short sampling period, yielding a coarse
estimate �1 of � without aliasing, and the second based on
a large baseline or much larger sampling period, providing
an aliased estimate �2 of � at a �ner scale. Both estimates
can be combined to obtain a �nal estimate �̂ = 2�n + �2,
where the integer number of cycles n is estimated from �1.
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Fig. 1. Multi-resolution spatial sampling

In this paper, we elaborate on this idea, and apply it to
DOA estimation, frequency estimation, and a combination
of the two. It should be remarked that none of the ideas
is truly new. In particular, Zoltowski e.a. [2] discuss a sim-
ilar problem of angle-frequency estimation using multiple
scales in time and space. Because of ambitious goals, how-
ever, their solutions are very much directed by engineering
considerations, which incurs a certain sacri�ce in elegance
and clarity. In particular, the coarse frequency estimation
is done by applying ESPRIT to a small set of DFT val-
ues around spectral peaks which are determined via peak
searching algorithms. The �ne frequency estimates and the
angle estimates are obtained sequentially and for each esti-
mated coarse frequency independently, which assumes that
they are su�ciently unique. Here, we derive a one-shot joint
estimation procedure referred to as MR-ESPRIT.

There is a connection of MR-ESPRIT to MI-ESPRIT
[3, 4] as well. MI-ESPRIT also exploits the multiple shift-
invariance structure present in multi-baseline arrays. A
distinction is that MI-ESPRIT is formulated in terms of
(iterative) subspace �tting, and basically attempts to �nd
more accurate beamforming vectors by considering multiple
shift invariances. The original paper [3] did not speci�cally
recognize the fact that also more accurate direction esti-
mates can be found. Results in that direction, as well as a
non-iterative algorithm, can be found in [4].

2 MULTI-RESOLUTION ESPRIT

The original ESPRIT algorithm is based on arrays with a
doublet structure, i.e. consisting of several antenna pairs
with the same baseline vectors. The chosen array geome-
tries often admit other pairings with di�erent baselines. For
instance, the array structure shown in Fig. 1 combines two
spatial sampling rates. The minimal number of antennas to
have two baseline vector pairs is four. With more antennas,
several interesting con�gurations are possible.

TheM -dimensional array response vector a(�) is de�ned
as the response of the M -element antenna array to a nar-
rowband signal from a direction �. It can be parameterized
in several ways. The usual parameterization is in terms of
the `electrical angle' � = ej2��sin(�), where � is a refer-
ence distance smaller than half a wavelength. In our case
of an array with two baselines, we can (redundantly) pa-

rameterize the array by two parameters, �1 = ej2��1 sin(�)

and �2 = ej2��2 sin(�). In the case of the array of Fig. 1, we



have

a(�1; �2) =

2
4

1
�1
�2
�1�2

3
5

The idea is to treat the two parameters as independent and
estimate both of them from the measurement data, and
only then combine them into a single estimate of sin(�).
Estimation is done by exploiting the dual shift-invariance
structure of a(�1; �2), i.e., in the above example

ax1 =
h
a1
a3

i
; ay1 =

h
a2
a4

i
) ay1 = ax1�1;

ax2 =
h
a1
a2

i
; ay2 =

h
a3
a4

i
) ay2 = ax2�2;

where ai is the i-th entry of a(�1; �2). For more general
arrays with a dual shift-invariance structure, we can de�ne
selection matrices Jxi and Jyi (i = 1; 2) such that the above
relations hold for Jxia and Jyia. The resulting ESPRIT-
type algorithms are very similar to the case of joint azimuth-
elevation estimation.
Thus, to be speci�c, consider d narrowband sources si(t)

impinging on the antenna array. Collecting N output sam-
ples of the M antenna outputs into an M �N data matrix
X in the usual way, we obtain the data model

X = AS = a1s1 + � � �+ adsd

where the columns of A contain the array response vectors
faig, and the rows of S are the sampled source signals. As-
suming d < M , the �rst step of the algorithm is to estimate
a basis U of the column span ofX, typically using an SVD.
U and A are related by a d� d nonsingular matrix T as

U = AT

The second step in the algorithm is to form submatrices of
U using the proper selection matrices:

Uxi = JxiU ; Uyi = JyiU : (i = 1; 2)

The shift-invariance structure of the array implies that

Uxi = A
0
T ; Uyi = A

0
�iT ;

where A0 consists of the �rst M � 1 rows of A and the
diagonal matrix �i = diagf�ijg

d
j=1 contains the d shift pa-

rameters of the d sources with reference to the i-th baseline.
The �nal step is to estimate the parameters by considering

E1 = U
y
x1Uy1 = T�1�1T ;

E2 = U
y
x2Uy2 = T�1�2T :

It is seen that the data matrices E1 and E2 are jointly
diagonalizable by the same matrix T . There are several
algorithms to compute this joint diagonalization, e.g. by
means of QZ iterations [5] or Jacobi iterations [6]. For this
to work, it is necessary that each submatrixUxi has at least
d rows. After T has been found, we also have estimates of
f(�1k; �2k)g for each of the d sources.
It remains, for each source, to combine �1 and �2 into

an estimate of the argument � of �. Let us assume that
�1 �

1
2
, so that �1 (argument of �1) is not aliased and is

a coarse estimate of �. Also assume that �2 �
1
2
, so that

in �2 aliasing occurs: the estimate � is proportional to �2
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Fig. 2. (a) The aliased spatial frequency �2 as a
function of the alias-free spatial frequency �.
(b) The corresponding winding number n.

plus an appropriate integer multiple of 2� (see Fig. 2). It
follows that we have two estimates of 2� sin(�),

2� sin(�) =
1

�1
�1 =

1

�2
(2�n+ �2) :

The winding number n is determined as the best �tting
integer to match the two right hand side expressions,

n = round
1

2�
(
�2

�1
�1 � �2):

The ratio ks :=
�2

�1

can be interpreted as the (spatial) gain

in resolution. In particular, the estimate of 2� sin(�) based
on �2 is a factor ks more accurate than that based on �1.
Assuming for simplicity that �1 and �2 are independent
variables with equal variances, the two estimates can be
optimally combined as

sin(�) =
s1 + k2ss2

1 + k2s
; (1)

where s1 =
1

2�

1

�1
�1 and s2 =

1

2�

1

�2
(2�n+ �2)

(This expression easily generalizes to the case of more than
two baselines.)

3 JOINT ANGLE-FREQUENCY ESTIMATION

3.1 Model

Suppose that we observe a frequency band of interest, and
want to separate all sources that are present. The sources
are narrow band, typically with di�erent carrier frequencies,
but the spectra might be partly overlapping. The objective
is to construct a beamformer to separate the sources based
on di�erences in angles or carrier frequencies. This is a
problem of joint angle-frequency estimation [2, 7, 8]. We
will assume that the sample rates are much higher than the
data rates of each source, and that there is no multipath,
although generalizations are possible.
Suppose that the narrow band signals have a bandwidth

of less than 1
T
, so that they can be sampled with a period

T to satisfy the Nyquist rate. We normalize to T = 1. Let
us say that the bandwidth of the band to be scanned is an
integer number F times larger: after demodulation to IF we
have to sample at a rate F . Without multipath, the data
model of the modulated sources at the receiver is

x(t) =

dX
1

a(�i)e
j 2�
F
fitsi(t)



where fi is the residual modulation frequency of the i-th
source (�F

2
� fi <

F
2
). In matrix form this is written as

x(t) = A�
t
s(t) (2)

where � = diagf�ig
d
i=1 and �i = ej

2�

F
fi . Since F can

be quite large (order 20, say), it would be very expensive
to construct a full data matrix of all samples. In fact, it
is su�cient to subsample: collect m subsequent samples at
rate F , then wait till the next period before sampling again,
resulting in a data matrix

X =

2
664
x(0) x(1) � � � x(N � 1)
x( 1

F
) x(1 + 1

F
) � � � x(N � 1 + 1

F
)

...
...

...
x(m�1

F
) x(1 + m�1

F
) � � � x(N � 1 + m�1

F
)

3
775 :

With the model of x(t) in (2), we �nd that X has a factor-
ization

X =

2
664
As(0) A�Fs(1) � � �
A�s( 1

F
) A�F+1s(1 + 1

F
) � � �

...
...

A�m�1s(m�1
F

) A�F+m�1s(1 + m�1
F

) � � �

3
775 (3)

Let us assume at this point that F � m. In that case,
s(t) is relatively band limited with respect to the observed
band, which allows to make the crucial assumption that

s(t) � s(t+ 1
F
) � � � � � s(t+ m�1

F
)

so that the model of X simpli�es to

X �

2
664
A
A�
...

A�m�1

3
775 [s0 �

F
s1 � � � �(N�1)F

sN�1]

= (F �A)(F 0 � S) :

where � represents a column-wise Kronecker product, �
denotes an entry-wise (Schur-Hadamard) matrix product
and

F =

2
664

1 � � � 1
�1 � � � �r
...

...
�F�11 � � � �F�1r

3
775 ; �i := �

fi = e
�j 2�

F
fi :

F 0 is similar to F except for a transpose and di�erent pow-
ers, and represents the modulation on the signals. Obvi-
ously, beamforming will not remove this modulation but
after estimating �, we can easily correct for it.

3.2 Estimation algorithm

At this point, we have obtained a model with much the
same structure as before, but with A replaced by F �A.
The construction of the beamformer can now follow the
same strategy as well. First note that the rank of X is only
d, since this is the number of rows of S. Thus we compute
the SVD of X, i.e. X =: Û�̂V̂ where Û has d columns,
spanning the column space of X. As before, we have

Û = (F �A)T ; S = (T Û
H
)X
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Fig. 3. Multi-resolution temporal sampling

To estimate T , we begin by de�ning two types of selection
matrices: a pair to select submatrices from F , and a pair
to select from A,

n
Jx� := [Im�1 01] 
 IM
Jy� := [01 Im�1] 
 IM ;

n
Jx� := Im 
 [IM�1 01]
Jy� := Im 
 [01 IM�1]:

To estimate �, we take submatrices consisting of the �rst
and respectively last M(m� 1) rows of Û , i.e.

Ûx� = Jx�Û ; Ûy� = Jy�Û ;

whereas to estimate � we stack, for all m blocks, its �rst
and respectively last M � 1 rows:

Ûx� = Jx�Û ; Ûy� = Jy�Û :

These data matrices have the structures�
Ûx� = A0T

Ûy� = A0�T

�
Ûx� = A00T

Ûy� = A00�T
; (4)

If dimensions are such that these are low-rank factoriza-
tions, then

Û
y

x�Ûy� = T�1�T

Û
y

x�Ûy� = T�1�T ;
(5)

and T can be computed by joint diagonalization.

3.3 Multi-resolution estimation algorithm

If the frequency band to be monitored is much wider than
the bandwidth of the signals, then in the above algorithm
F has to be chosen very large. This implies that the fre-
quency estimates will not be very accurate. To overcome
this problem, we can employ the multi-resolution ideas of
section 2, but now in the temporal domain.
Thus suppose we have two sampling rates, F1 (fast) and

F2 (intermediate, compared to the source bandwidths), re-

lated via a temporal gain factor kt = F1
F2

� 1. It usu-

ally su�ces to collect only two subsequent samples at the
fastest rate F1, for every m samples at the intermediate
rate F2. See Fig. 3. In the �gure, the outputs Xi and Y i,
i = 1; : : : ;m, are all M �N matrices, where M is the num-
ber of antenna elements and N is the number of temporal
samples. This means that the data matrices X and Y are
each of size mM � N and have a structure as in equation
(3)2. Let Z be the overall data matrix, with a factorization

Z :=
h
X
Y

i
=
h
A

A�1

i
S;

2Note that F2 corresponds to the sampling rate F in (3).



where A is constructed from A as

A =

2
664
A
A�2

...
A�m�1

2

3
775 :

The estimation of the parameters follows by de�ning
three types of selection matrices operating on the data ma-
trix Z:

Jx�1 = [1 0]
 Im 
 IM
Jy�1 = [0 1]
 Im 
 IM
Jx�2 = I2 
 [Im�1 0]
 IM
Jy�2 = I2 
 [0 Im�1]
 IM
Jx� = I2 
 Im 
 [IM�1 0]
Jy� = I2 
 Im 
 [0 IM�1]

After similar processing steps as before (SVD of Z, appli-
cation of the selection matrices), we obtain the model

U
y
x�1Uy�1 = T�1�1T

U
y
x�2Uy�2 = T�1�2T

U
y
x�Uy� = T�1�T

A joint diagonalization of the three matrices now provides
estimates of (�1; �2; �) of each source. If the array has
an additional multiresolution structure, then � splits into
�1; �2 and can be estimated with multi-resolution ES-
PRIT as discussed in section 2.
To complete our estimation procedure, we need to esti-

mate for each source the argument � of � by combining �1
and �2 in the same way as we did for the DOA estimation in
section 2. We assume that the two sampling frequencies F1
and F2 are such that F1 >

1
2
fmax and F2 �

1
2
fmax. Based

on these two sampling rates we obtain two estimates of the
frequency f :

f =
F1

2�
�1 =

F2

2�
(2�n+ �2): (6)

The winding number n is determined as before using

n = round
1

2�
(
F1

F2
�1 � �2)

Note that if �1 and �2 have estimation errors of equal size,
then the noise on the second estimate is a factor kt =

F1
F2

smaller than the �rst estimate. Thus, we would either use
the second equation to estimate fi, or optimally combine
the two estimates using an equation similar to (1).

4 SIMULATION RESULTS

In this section we give simple simulation results that demon-
strate the theory developed in this paper. The simulation
example considers a processing band of 10 MHz and a lin-
ear antenna array with M = 4 antenna elements arranged
as in Fig. 1 with �1 = 1

2
and varying �2. The data is

collected into a 2mM �N matrix using the setup of Fig. 3
with m = 2, N = 64, F1 = 20MHz and varying F2. We
consider two sources emitting narrowband signals (25 kHz)
at center frequencies f = [6; 6:5] MHz, and propagating in
distinct directions with respective DOAs � = [40; 45] de-
grees. The simulations are intended to indicate the e�ects
of the spatial gain factor ks and the temporal gain factor
kt. Note that ks = 2 and kt = 1 correspond to uniform
spatial and temporal sampling, respectively.
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Fig. 4. (a) Standard deviation of the frequency es-
timates for various temporal gain factors kt;
(b) similar for the azimuth angle and spatial
gain ks.

The results are plotted in Fig. 4 as functions of varying
SNR. From the plots, it is evident that the multi-resolution
ESPRIT gives frequency and DOA estimates whose accu-
racies are proportional to the temporal gain factor kt and
the spatial gain factor ks, respectively. An upper limit for
these gains is reached when the winding numbers n can no
longer be estimated accurately; this is dependent on several
factors including the SNR.
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