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Abstract - This paper presents and studies a time frequency
distribution obtained from a Gabor expansion of a signal.
The distribution is named the Positive Gabor Spectrogram,
and is a new positive-like distribution with correct mar-
ginal distributions. Two side effects of correct marginals
are non-additivity and time frequency fading. These are
phenomena of a statistical correct distribution which do not
agree with our intuitive expectation of a time frequency re-
presentation.

I. INTRODUCTION

The purpose of Joint Time Frequency Analysis (JTFA) is to
map a one-dimensional function of time or frequency into a
two-dimensional function of time and frequency. Two
popular approaches are Wigner-Ville (WV) modified distri-
butions and statistical correct positive distributions. In this
paper, we will show how the latter type of distributions can
be obtained from a Gabor expansion of the function. 

The applicability of the Gabor expansion in JTFA has in
several cases been shown to be advantageous. The Gabor
Spectrogram (GS) is a very powerful distribution developed

by Qian and Chen[1], and is obtained by combinding the
WV distribution and the Gabor expansion. The problem
with negative cross-terms in the WV can now be localized
and reduced efficiently. By changing the number of Gabor
coefficients, the spectral resolution of the GS can be
changed in a more advantageous way than known from the
Fourier Spectrogram (FS). However, the result depends
strongly on how the Gabor expansion is made.
The Positive Gabor Spectrogram (PGS) is a new positive

distribution [2] with marginals corresponding to the Instan-
taneous Power (IP) and the Power Spectrum (PS). It is
obtained by combining the Gabor expansion and the IP/PS
and is a statistical correct distribution. Different PGS can be
obtained for the same function by changing the particular
Gabor expansion. Which Gabor expansion to use will for
the GS and PGS depend on the particular function and
application. However, it is important that the Gabor expan-

sion is an orthogonal-like Gabor expansion [3], because the
resulting Gabor coefficients reflect well local time and fre-
quency behaviour of the signal.

II. POSITIVE GABOR SPECTROGRAM

The Positive Gabor Spectrogram (PGS) is designed as a
positive distribution with marginals corresponding to the IP
and PS:

(1)

This class of distributions is described by the Cohen-Posch
class of distributions. The significance of this class is that
there is not only one distribution which satisfies our
demands, but an infinite number of distributions. The
remaining problem is to find a meaningful one for a given
signal. One of the main contributions to this problem has

been given by Loughlin [4]. He used an information theo-
retic approach to estimate a distribution. This entropy opti-
mization problem involved the principle of minimum cross-
entropy, and he therefore named his distribution a Minimum
Cross-Entropy Time-Frquency Distribution (MCE-TFD).
Because positive distributions are distributions in a statisti-
cal sense, Loughlin named this class of distributions,
proper distributions which have been widely accepted.
Now, instead of following Loughlin’s approach to a posi-
tive distribution, we propose a similar distribution based on
the Gabor theory. 

An important task in constructing a meningful TF energy
distribution, is to control the contributions from the inevita-
ble cross-terms (CT). These CT are not a phenomenon lim-
ited to bilinear distributions, but is due to the quadratic
nature of an energy representation. As CT exist in all
energy distributions, they are also present in 1D distribu-
tions like the IP and PS. 
In order to construct a 2D distribution, it will be advanta-
geous first to consider 1D distributions. This will reveal
some of the nature of CT and enable us to construct a 2D
positive energy distribution with correct marginals. The
effect of CT is distinct when analyzing multicomponent
signals, and in the following we will use a two component
signal . The IP/PS are 1D energy dis-
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tributions and are defined as the square of the modulus of
the time and frequency representation of the signal, respec-
tively:

(2)

It is clear that the energy representation of a two component
signal is not the sum of the energy representation of the
individual terms. This is sometimes noted by the fact that
energy content is not additive (non-additivity). The third
term is due to the quadratic nature, and is a CT, because it
contains information about both components. Even though
the CT can be negative, a 1D distribution cannot be nega-
tive by definition. The energy contribution of the CT is
equal in both time and frequency domain, i.e.

(3)

From (3) it is concluded that the components have to be
overlapping in both domains, before the CT contributes
with energy! In the rest of this article, we use Gaussian
functions that distinguish themselves by being easy to
manipulate mathematically and are shape invariant under
the Fourier transformation. To be specific, we use energy
normalized functions:

(4)

and a particular TF shifted Gaussian function of the follow-
ing form:

(5)

It is the nature of quadratic transformations to produce
functions, if the input contains  functions. The sum of

these  functions will be positive by definition. In order
to interpret the result, it would be desirable that the result
would again consist of the same  number of positive
functions. This would force the contributions from the

 CT to be placed together with the auto-terms to
form an  component function. This function will be
called the Positive Power Decomposition (PPD). 
We will first find a possible PPD for two Gaussian func-
tions. This PPD will then be extended to handle N Gaussian
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functions. This enables a PPD for arbitrary signals through
the Gabor expansion! 
However, before defining a PPD for functions, we will first
show a simple example involving only numbers instead of
functions. The absolute square of three arbitrary numbers
is:

(6)

The negative level of the CT will never exceed the positive
level of the AT. Therefore it will be posible to divide the
contribution from the CT between the components of the
AT and preserve the positive level of each of the AT:

(7)

The PPD for two Gaussian functions consists of two func-
tions,  and :

(8)

It will always be possible to make this positive decomposi-
tion, because the negative part of the CT will never exceed
the positive level of the AT. The constraint of the positive
functions, and will be:

(9)

Eqs. (9)a, b and c set the local and global constraints on the
decomposed cross-term (DCT). The local constraint
ensures positivity, and the global constraint divides the
energy contribution of CT between the auto-terms accord-
ing to the amplitude of the auto-terms. Notice that this con-
straint involves integration of part of a Gaussian function,

which is very difficult. We will therefore differ from (9)c,
and then later see the consequences of this choise. We now
introduce the following: 

1 4 2–+
2

1
2

4
2

2
2

+ + 12–=

AT CT

       {

1 4 2–+
2

1
2 1

2

1
2

4
2

2
2

+ +
-------------------------------------- 12–( )⋅+ 

 
 

=

4
2 4

2

1
2

4
2

2
2

+ +
-------------------------------------- 12–( )⋅+

 
 
 

+

2
2 2

2

1
2

4
2

2
2

+ +
-------------------------------------- 12–( )⋅+ 

 
 

+

0 43 6 86 1 71,+,+,=

P1 t( ) P2 t( )

x t( ) 2
g1 t( ) 2

g2 t( ) 2
+= 2 Re g1∗ t( ) g2 t( ){ }⋅+

P1 t( ) P2 t( )+=

P1 t( ) P2 t( )

a( ) P1 t( ) g1 t( ) 2
DCT1 t( )+ 0≥=

b( ) P2 t( ) g2 t( ) 2
DCT2 t( )+= 0≥

c( ) DCT1 t( ) td∫
A1

2

A2
2

------ DCT2 t( ) td∫⋅=

d( ) DCT1 t( ) DCT2 t( )+ 2 Re g1∗ t( ) g2 t( ){ }⋅=



ICASSP 98 3

(10)

The limitations on  can be found from

(11)

A natural choice would be to divide the CT contribution ac-
cording to the level of the auto-terms:

(12)

Observe that using (12) the positive constraint is met. 
The example with two Gaussian functions can be extended
to N*M Gaussian functions, and thereby a Gabor expansion
of an arbitrary function or signal. The PPD will therefore be
a collection of positive functions, and the sum will be the
Instantaneous Power. This is done in the following way:
First the signal is represented by the following Gabor
expansion:

(13)

and the corresponding auto- and cross-terms are found to be

(14)

The is the sum of  positive Gaussian functions
. Then PPD can be found by dividing the sum of

cross-term  between the auto-terms . Fol-
lowing the idea of (7), the PPD will have the following
form:
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The same decomposition can be made for the PS. When the
Gabor expansion is Fourier transformed, the PPD enables a
division of the CT between the autoterms. The Fourier
transformed signal is represented by the following Gabor
expansion:

(16)

The corresponding auto- and cross-terms can be found to be

(17)

The PPD can now be obtained by dividing the sum of cross-
term  between the auto-terms:

(18)

The advantage of the PPD of the IP and the PS respectively,
is now clear, because it enables the construction of a posi-
tive time-frequency distribution, which in the following is
referred to as the Positive Gabor Spectrogram (PGS):

(19)

It is clear that the PGS is positive, as the PPD terms are pos-
itive. The time marginal is also preserved because:

(20)

In the case of the frequency marginals, we have:

(21)

Hence, we have a problem because we cannot ensure fulfil-
ment of the global constraint which controls the division of
the CT energy contribution. This means that

 which is a main condition of (21). We can
therefore not be sure that the frequency marginal is correct.
but in practice, the problem is minor. 
To test the PGS, an analysis is made of four test signals, and

the results are placed in Figure 1. The results of the PGS are
compared to the FS and WV, because these distributions
have properties which we want the PGS to possess : posi-
tivity and correct marginals.
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(a) FS of test1 (d) FS of test2 (f) FS of test3 (i) FS of test4

(b) WV of test1 (d) WV of test2 (g) WV of test3 (j) WV of test4

(c) PGS of test1 (e) PGS of test2 (h) PGS of test3 (k) PGS of test4

Figure 1. Result of the FS, the WV and the PGS for four test signals.

III. CONCLUSION

We have shown that positive distribution can be con-
structed using the Gabor expansion. However, the result
have missing focus for signal component wich are not ori-
ented in vertical or horizontal lines in the time-frequency

plan [5]. The effect of correct marginals is TF fading, which
means that every zero-crossing in the PS and IP is fading
the distribuiton to zero. The resulting distribution of a real
signal will therefore have a very spiky shape. When the dis-
tribution was implementated, the corresponding distribu-
tion was sampled in discrete points. However, when these
points were closed or identical with the zero-crossing, the
resulting distribution was misleading. An effect of the fre-
quency marginal is that The results of our analysis of meas-
urements made “Monday” will be effected of our
measurements made “Tuesday” (non-additivity).
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