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ABSTRACT

Detectors design requires substantial knowledge of the
observation statistical properties, conditionally to the
competing hypotheses H0 and H1. However, many
applications involve complex phenomena, in which few a
priori information is available. Several methods of
designing time-frequency-based (TF) receivers from
labeled training data have been proposed. Unfortunately,
the resulting detectors have large biases, particularly when
the number of training samples is small against the data
dimension. The method presented here is based on the
Structural Risk Minimization principle developed by
Vapnik, and consists in locally adjusting the resolution of
TF-based detectors to the information carried by each TF
location. This operation, controlled by a measure of H0 and
H1 separability, allows to advantageously reduce receivers
complexity and solutions bias. The resulting reduced-bias
TF-based detectors can yield a substantial improvement in
detection performances.

1. INTRODUCTION
Cohen's class time-frequency (TF) representations have

been extensively used for detection in applications ranging
from radar to machine fault diagnostics, due to the need for
dealing with non-stationary signals. These bilinear
representations are parameterized in time and frequency
terms, and describe non-stationary signals characteristics
via their time-varying spectral content. Most of the TF-
based detectors which have been proposed are linear
structures operating in the TF domain, and are merely
equivalent to quadratic receivers usually defined in the
time domain [1]. Recently, a promising TF-based quadratic
detection theory has been introduced: in [9], Sayeed and
Jones identify several scenarios in which detectors are both
optimum and fully exploit the many degrees of freedom
available in TF representations.

It is noteworthy that these approaches require
substantial knowledge of signals whereas phenomena are
complex and poorly understood in many applications [8].
In that context, Richard and Lengellé have presented a
method of obtaining TF-based detectors directly from
labeled training data [5][6]. The resulting receivers offer

better performances than those obtained via the Fisher
criterion maximization [4]. Unfortunately, detectors
designed from training data often have a large bias,
particularly when the number of training samples is small
against the data dimension [3]. This experimental evidence
has been theoretically studied by Vapnik and
Chervonenkis, who have exhibited links between the
generalization performances of receivers, their complexity
(VC-dimension), and the size of the training sets [12].
Then methodologies such as Structural Risk Minimization
(SRM) [11] and Minimum Description Length (MDL) [7]
principles have been proposed to match the complexity of
classification structures to the amount of available
examples.

In this paper, the method that we present is based on
the SRM principle, and consists in locally adjusting the
resolution of TF-based detectors to the information carried
by each TF location. This operation, controlled by the
optimization of a measure of the hypotheses H0 and H1

separability, allows to advantageously reduce the VC-
dimension of receivers and the bias of solutions. The
resulting reduced-bias detectors, by virtue of their adapted
resolution in the TF domain, can yield a substantial
improvement in detection performances. The paper is
organized as follows. First, we briefly describe an efficient
method of designing TF-based detectors from training
data. Then, we discuss the issue of obtaining reduced-bias
TF-based receivers. An example illustrates the efficiency
of our approach. Finally, we present some conclusions
regarding the results presented.

2. TIME-FREQUENCY APPROACH TO
DECISION PROBLEMS

2.1. Linear detection in the TF domain

The detection problem we consider is as follows. Given
a discrete-time signal x received over the interval (D),
where x = [x(0), ..., x(d-1)]T, one must decide between the
two competing hypotheses H0 and H1:
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where s is the underlying (complex) signal to be detected,
and n some additive (complex) noise. Cx denotes a discrete
Cohen's class TF representation of the signal x, and � the
autocorrelation domain kernel.

By analogy with the classical matched filter theory, one
can consider the following class of TF-based detectors:

λ( ; ) ( ) ( , ; )x h k f k f
fk

= ∑∑ h , Cx Π . (2)

The two-dimensional function h is a TF reference to be
determined, using the a priori known characteristics of the
signal s and the noise n. Such a determination can be
achieved from training data by using the optimal approach
proposed in the next section.

2.2. Detector design from training data

We now discuss a method of obtaining optimum TF-
based detectors from training data (i.e. which minimize an
estimation of the error probability), regardless of the
signals distributions. This approach has been introduced by
Fukunaga to design linear discriminants in the context of
Pattern Recognition [3], and adapted by Richard and
Lengellé to design optimum TF-based detectors [5][6].

Using the expression of the statistic (2), the detection
problem (1) can be rewritten as follows:
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The design work consists in finding the optimum vector
V and threshold value � in the sense of a preselected
criterion, and for a given data set. Using a minimal a priori
knowledge, the statistic � can be characterized by the
following expected values and variances:
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Mi and �i must be estimated from training samples.

Let f ( , , , )η η σ σ0 1 0
2

1
2  be any measure (depending only

on these parameters) of H0 and H1 separability in the
�-space. This criterion must be optimized so that the
derivatives of f, with respect to V and �, must be equated
to zero. The resolution of these two equations provides a
interesting analytical solution for the detector (2) design:
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Thus, the optimum TF-based receiver has the form (7)
regardless of the selection of f: the criterion effect only
appears in the parameter � (0 � � � 1). In our case, we
choose the � value which minimizes an estimation of the
error probability, using an iterative procedure. Note that
the obtained detector offers better performances than those
determined via the maximization of the Fisher criterion
(� = P{H0}) and the signal to noise ratio (� = 1) [4][8].

As a conclusion, this method allows to determine the
optimal TF-based receiver in the sense of the best criterion
f ( , , , )η η σ σ0 1 0

2
1
2 , without setting it up.

3. OPTIMIZATION OF TF-BASED
DETECTION STRUCTURES

3.1. Complexity regularization

Achieving good performances with detectors designed
from training samples requires matching their complexity
to the amount of available data: receivers with a too large
number of adjustable parameters may exhibit poor
generalization performances, whereas those with an
insufficient complexity may not be able to learn the
training examples. In between, there is an optimal
complexity which yields the best generalization error Egene
for a given size of the training set. This problem, which
has particularly been studied by Vapnik et al. [12], is now
briefly discussed.

Let C be a set of detectors, and let VC be its VC-
dimension. This parameter characterizes the complexity of
the receivers contained in C: it is defined as the maximum
number of training samples they can learn without error,
and for all possible binary labelings. In some cases such as
generalized linear classifiers, VC corresponds to the
number of free parameters available in the structure (e.g. if
C = {(� ; �)}, then VC = d2 + 1). But generally, its analytic
determination is quite difficult. As shown in [11], the VC-
dimension of a receiver allows to derive an upper bound of
the generalization error from the size N of the design set,
and from the training error. With a probability close to
one, and simultaneously for all statistics which belong to
C, it has been demonstrated that:

( )( )E E V Ngene train C≤ + O ln N . (9)

Etrain denotes the frequency of errors on the training set.

The method of Structural Risk Minimization consists in
matching VC to the amount of training data in order to get

the best compromise between the competing terms Etrain

and O(.): reducing VC causes O(.) to decrease, but Etrain to



increase. In order to give a precise statement of the VC-
dimension selection problem, we assume the following
nested sequence of subsets Ci in the class C:
C C V Vr C Cr1 1

⊂ ⊂ ⊂ ⇒ ≤ ≤ ≤� � � �
(10)

The problem is then: given a training set, and the sequence
of receivers (�1 ; �1), ... determined by a learning

algorithm, select Copt such that (�opt ; �opt) minimizes the

resulting generalization error. Because Egene cannot be

computed in general, one can consider its estimation Etest
on a separate test set (Cross-Validation). Some
approximations of the generalization error, solely based on
Etrain and on additive complexity penalty terms, have also
been introduced [7][11].

3.2. Reduced-bias TF-based detectors design

As it as been shown before, one must balance the VC-
dimension of a TF-based detector with its goodness of fit
to the training data, in order to optimize Egene. Let us
define the resolution of the receiver (2) over a TF area (A)
as the number of free parameters h(k, f) available over it.
The approach we now investigate consists in locally
adapting the detector resolution to the information carried
by each TF location: the more discriminant the information
over (A) is, the higher the local resolution is. Let Cr be the
following class of receivers whose resolution, over the
whole TF domain, is equal to r:

{ }C h h k f on A j rr WV j j= = =( (.; ); ) ( , ) , ,..., ,λ γ α 1 (11)

where {A1, ..., Ar} denotes a partition of the TF domain.
This condition imposes on the reference h to roughly
exploit the structure of TF representations (correlation
between adjoining TF locations [2], non-existence of
impulses in the TF domain, ...).

It is noteworthy that C1, C2, ..., Cd
2 define a nested

sequence of subsets in the class C of linear receivers
operating in the TF domain, from the smallest resolution
(the energy detector, when r = 1) to the highest one
(r = d2). The VC-dimension of each subset Cr is equal to
(r + 1). As a consequence, the strategy discussed in §(3.1)

can be advantageously used to match the complexity of
TF-based detection structures to the amount of available
training data. Thus, the target detector (�opt ; �opt) satisfies:

( ){ }( ; ) ( ; )λ γ λ γopt opt r r r= argmin Etest (12)

where
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A possible way of representing the partition
{A 1, ..., Ar} comes from the Voronoï diagram theory.

Consider a finite number of points a1, ..., ar (the Voronoï

sites) of the TF domain. To each site ai is associated the set

Ai of all TF locations for which the closest Voronoï site is

ai, termed Voronoï cell. Thus, the resolution of eq.(13) can
be completed by optimizing the location of the Voronoï
sites in the TF domain. Unfortunately, Etrain as a function

of (a1, ..., ar) is piecewise constant due to the TF domain
discretization, which leads the standard gradient-based
methods to perform badly. In the context of mechanical
inclusions identification [10], Schoenauer et al. have
shown the efficiency of Evolutionary algorithms for
Voronoï diagrams optimization. In Part 4, a simple
example illustrates the excellent performances of this
approach to design reduced-bias TF-based detectors.

4. EXPERIMENTAL RESULTS
In the case of detecting the presence or absence of

s(k) = sin(0.44�k + �)	(1 - cos(2�k/15)), k 
 {0, ..., 15},
in zero mean white Gaussian noise, with phase � a uniform
random variable, the optimal receiver is well known to
correspond to the inner product of the Wigner distribution
(WD) of the signal s (Fig.1) with that of the observation x.
In order to illustrate our approach, several experiments of
blind detector design from training data were conducted
with 270 realizations of the hypotheses H0 and H1, in such
way that the training set size was relatively small compared
to the problem dimension (162 + 1). A test set containing
150 realizations of the signal to be detected plus noise, and
noise only, was also generated. These samples were
dedicated to the selection of �opt and ropt in equations (7)
and (12). The TF reference h, resulting from the direct
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application of the method introduced in Part 2, is shown in
Fig.2 (r = d2): the presence of the signal component is not
very apparent because few training examples were
available. The design of the optimal reduced-bias TF-
based detector was also performed. The competition
between VC-dimension and training error results in a
minimum of the error test, obtained for r equal to 14
(Fig.3). For this optimal value of r, the TF reference h is
presented in Fig.4: it has roughly the same structure as the
WD of the signal to be detected (Fig.1), and strongly
synthesizes the information carried by the TF
representation.

The generalization performance of these detectors were
estimated by applying them to 2000 realizations each of
signal present or absent. Using the quadrature matched
filter, which constitute the optimal detector, the error
probability was 8.50%. The performance of the receiver
resulting from the method introduced in Part 2 was
11.05%. This result must be compared to 8.90% obtained
with the reduced-bias TF-based detector. Consequently,
these experiments clearly demonstrate the ability of the
proposed method to closely approach the performance of
the optimal quadratic detector, even if the size of the
training set is relatively small compared to the problem
dimension.

5. DISCUSSION
Bilinear TF representations have been widely used for

detection in non-stationary environments. However, most
of the TF-based detectors which have been proposed are
linear structures operating in the TF domain, merely
equivalent to quadratic receivers usually defined in the
time domain. Moreover, their design requires substantial
knowledge of signals whereas phenomena are poorly
understood in many applications. In order to improve the
design stage, we have developed a method of determining
the optimal TF-based detector, i.e. which minimizes an
estimation of the error probability, directly from labeled
training data. Unfortunately, it is well-known in Pattern
Recognition that sample-based classifiers can have large
biases, particularly when the size of the training set is
small against the data dimension. The method developed

here, which is based on the Structural Risk Minimization
principle, fully exploit the structure of TF representations
to advantageously reduce the VC-dimension of the
receiver. The obtained reduced-bias detectors, by virtue of
their adapted resolution in the TF domain, can yield a
substantial improvement in generalization performances.
However, this efficient process is computationally
expensive, and further works on discovering practical
algorithms are needed.
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