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ABSTRACT better performances than those obtained via the Fisher
. ) ) criterion  maximization [4].  Unfortunately, detectors
Detectors design requires substantial knowledge of thejesigned from training data often have a large bias,
observation statistical properties, conditionally to the paricularly when the number of training samples is small
competing hypotheses oHand H. However, many  against the data dimension [3]. This experimental evidence
applications involve complex phenomena, in which few a has been theoretically studied by Vapnik and
priori information is available. Several methods of Chervonenkis, who have exhibited links between the
designing time-frequency-based (TF) receivers from generalization performances of receivers, their complexity
labeled training data have been proposed. Unfortunately vC-dimension), and the size of the training sets [12].
the resulting detectors have large biases, particularly whenrhen methodologies such as Structural Risk Minimization
the number of training samples is small against the datqSRM) [11] and Minimum Description Length (MDL) [7]
dimension. The method presented here is based on thgrinciples have been proposed to match the complexity of

Structural Risk Minimization principle developed by classification structures to the amount of available
Vapnik, and consists in locally adjusting the resolution of examples.

TF-based detectors to the information carried by each TF ) .
In this paper, the method that we present is based on

location. This operation, controlled by a measure gaht e . . S
P y - the SRM principle, and consists in locally adjusting the

M separab|llty, allows to advantageously _reduce FeCeIVerS esolution of TF-based detectors to the information carried
complexity and solutions bias. The resulting reduced-bias

TF-based detectors can yield a substantial improvement inby .ee.lCh .TF location. This operation, controlled by the

detection performances. optimization of a measure of the hypothesgsaHd H
separability, allows to advantageously reduce the VC-

1. INTRODUCTION dimension of receivers and the bias of solutions. The

, ) i resulting reduced-bias detectors, by virtue of their adapted
Cohen's class time-frequency (TF) representations havgeqo|tion in the TF domain, can yield a substantial

been extensively used for de.tection .in applications rangingimprovement in detection performances. The paper is
from radar to machine fault diagnostics, due to the need fof, oo hi76q as follows. First, we briefly describe an efficient

dealing with non-stationary signals. These bilinear ooy of designing TF-based detectors from training
representations are parameterized in time and freqUeNCYaia Then, we discuss the issue of obtaining reduced-bias

terms, and describe non-stationary signals characteristicgr_pageq receivers. An example illustrates the efficiency
via their time-varying spectral content. Most of the TF- our approach. Finally, we present some conclusions
based detectors which have been proposed are "ne"’\regarding the results presented.

structures operating in the TF domain, and are merely

equivalent to quadratic receivers usually defined in the o TIME-FREQUENCY APPROACH TO
time domain [1]. Recently, a promising TF-based quadratic
detection theory has been introduced: in [9], Sayeed and DECISION PROBLEMS

Jones identify several scenarios in which detectors are bott? 1. Linear detection in the TF domain

optimum and fully exploit the many degrees of freedom

available in TF representations. The detection problem we consider is as follows. Given
a discrete-time signal x received over the interval (D),
where x= [x(0), ..., x(d-1)], one must decide between the
fwvo competing hypothesegtdnd H:

It is noteworthy that these approaches require
substantial knowledge of signals whereas phenomena ar
complex and poorly understood in many applications [8].
In that context, Richard and Lengellé have presented alHo: Cx(kfiM)=Cn(k i), (1)
method of obtaining TF-based detectors directly from %41: Cy (k f;M) =Cgyn(k, f;1T),
labeled training data [5][6]. The resulting receivers offer



where s is the underlying (complex) signal to be detected, af/a 0%
and_n some additive (complex.) noisa.c[énptes adiscrete 27 af/acr(2,+af/6 0% )
Cohen's class TF representation of the signal x,Iatice

autocorrelation domain kernel.

(8)

Thus, the optimum TF-based receiver has the form (7)
regardless of the selection of f: the criterion effect only

By analogy with the classical matched filter theory, one appears in the parameter(0 < a < 1). In our case, we
can consider the following class of TF-based detectors:  choose they value which minimizes an estimation of the
A(x; h)= z z h(k,f) Cy(k,f;M). (2) error probability, using an iterative procedure. Note that

- K L1 the obtained detector offers better performan than th
The two-dimensional function h is a TF reference to be € 0Ptained deteclor ollers better performances than those
determined, using the priori known characteristics of the ~determined via the maximization of the Fisher criterion
signal s and the noise. Buch a determination can be (&= P{Hd}) and the signal to noise ratio & 1) [4][8].
achieved from training data by using the optimal approach  As a conclusion, this method allows to determine the
proposed in the next section. optimal TF-based receiver in the sense of the best criterion
. . f(No, N1, 0% 02) , without setting it up.
2.2. Detector design from training data (N0:11,0%,01) gitup

We now discuss a method of obtaining optimum TF- 3. OPTIMIZATION OF TF-BASED

based detectors from training data (i.e. which minimize an DETECTION STRUCTURES
estimation of the error probability), regardless of the 1 ¢ lexit larizati
signals distributions. This approach has been introduced byq" - Lomplexily regularization

Fukunaga to desjgn linear discriminants in thg context of Achieving good performances with detectors designed
Pattern Recognition [3], and adapted by Richard andgqnm training samples requires matching their complexity
Lengellé to design optimum TF-based detectors [S][6]. 5 the amount of available data: receivers with a too large
Using the expression of the statistic (2), the detectionnumber of adjustable parameters may exhibit poor
problem (1) can be rewritten as follows: generalization performances, whereas those with an
insufficient complexity may not be able to learn the

%f (Y h) =VTY 2y then Hy (3) training examples. In between, there is an optimal
Eelse H, complexity which yields the best generalization errgsik
where for a given size of the training set. This problem, which
Y =[Cyx(LLM)...Cy(d, ol;rl)]T has particularly been studied by Vapeikal.[12], is now

T (4) briefly discussed.
v=[h(zY...h(d, d] .

The design work consists in finding the optimum vector
V and threshold value in the sense of a preselected
criterion, and for a given data set. Using a miniengltiori
knowledge, the statistié¢. can be characterized by the
following expected values and variances:

ni = E{AY; h)[H} = VM, +y,

Let C be a set of detectors, and leg Ve its VC-
dimension. This parameter characterizes the complexity of
the receivers contained in C: it is defined as the maximum
number of training samples they can learn without error,
and for all possible binary labelings. In some cases such as
generalized linear classifiers, cVcorresponds to the

) number of free parameters available in the structure (e.g. if
o? = var{\(Y; )| H} = VTV, C={(x; 1)} then Ve = d + 1). But generally, its analytic
determination is quite difficult. As shown in [11], the VC-
wher M;j = E{l| Hi}v (6) dimension of a receiver allows to derive an upper bound of
3= E{(y_ M) (Y -M; )T|H i}- the generalization error from the size N of the design set,
B o ” and from the training error. With a probability close to
Mi andXj must be estimated from training samples. one, and simultaneously for all statistics which belong to
Let f(No,N1,0%,02) be any measure (depending only C, it has been demonstrated that:
on these parameters) ofoHind H separability in the — Egene< Etrain"'o(\/vcln(N)/N)' ©)

A-space. This criterion must be optimized so that the g, denotes the frequency of errors on the training set.
derivatives of f, with respect to V angd must be equated ) o o
to zero. The resolution of these two equations provides a The method of Structural Risk Minimization consists in
interesting analytical solution for the detector (2) design: ~Matching \¢ to the amount of training data in order to get
V, = [cx 5o +(1—0()Zl]_l (Ml _ Mo) @) the best comp_romlse between the competing terms E
andO(.): reducing \& cause$(.) to decrease, butykin to



Fig.1: WD of the signal s (assumed unknown) Fig.2: Detector config. (Section 2.2)
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increase. In order to give a precise statement of the VC-can be advantageously used to match the complexity of
dimension selection problem, we assume the following TF-based detection structures to the amount of available

nested sequence of subsetinGhe class C: training data. Thus, the target detectayp(; yopy satisfies:
C10..0C 0.0 Vg, ...V, <. (10) (A opt:Y opd) = argminr{ Fest((A 1Y r))} (12)
The problem is then: given a training set, and the sequenceyhere

of receivers %i;y), .. determined by a learning () :y,)= argmin, Ar}{ Birain((A:Y) DCr)}_ (13)

algorithm, select gpt such that Xopt ; Yopy Minimizes the
resulting generalization error. Becausgede cannot be

computed in general, one can consider its estimatign E Consider a finite number of points,a.., a (the Voronoi

on a separate test set (Cross-Validation). Some . tthe TF d i T h sité iated th
approximations of the generalization error, solely based onSites) of the omain. To each siesassociated the set

Etrain and on additive complexity penalty terms, have also A of all TF locations for which the closest Voronoi site is

A possible way of representing the partition
{A1, ..., A} comes from the Voronoi diagram theory.

been introduced [7][11]. g, termed Voronoi cell. Thus, the resolution of eq.(13) can
be completed by optimizing the location of the Voronoi
3.2. Reduced-bias TF-based detectors design sites in the TF domain. Unfortunatelyydm as a function

of (a, ..., @) is piecewise constant due to the TF domain
discretization, which leads the standard gradient-based
methods to perform badly. In the context of mechanical
inclusions identification [10], Schoenauet al. have
shown the efficiency of Evolutionary algorithms for
‘Voronoi diagrams optimization. In Part 4, a simple
example illustrates the excellent performances of this
approach to design reduced-bias TF-based detectors.

As it as been shown before, one must balance the VC
dimension of a TF-based detector with its goodness of fit
to the training data, in order to optimizgeke Let us
define the resolution of the receiver (2) over a TF area (A)
as the number of free parameters h(k, f) available over it
The approach we now investigate consists in locally
adapting the detector resolution to the information carried
by each TF location: the more discriminant the information

over (A) is, the higher the local resolution is. Leth@ the 4. EXPERIMENTAL RESULTS
following class of receivers whose resolution, over the In the case of detecting the presence or absence of

whole TF domain, is equal to r: 5 ay 5K =Sin.44k +8)x(L - coS(@IVIS)), ke {0, .., 15}

Cr = {(AWV(" h),y)| Hkf)=ajonA,j=1.., r}, in zero mean white Gaussian noise, with piaaeuniform
where {Aq, ..., A} denotes a partition of the TF domain. random variable, the optimal receiver is well known to
exploit the structure of TF representations (correlation (WD) of the signal s (Fig.1) with that of the observation x.

between adjoining TF locations [2], non-existence of In order to illustrate our approach, several experiments of
impulses in the TF domain, ...). blind detector design from training data were conducted

_ ) . with 270 realizations of the hypothesegahd H, in such
It is noteworthy that ¢ Cp ..., G” define a nested \yay that the training set size was relatively small compared
sequence of subsets in the class C of linear receivergg the problem dimension (16 1). A test set containing
operating in the TF domain, from the smallest resolution 150 realizations of the signal to be detected plus noise, and
(the energy detector, when r=1) to the highest onepgise only, was also generated. These samples were
(r = of). The VC-dimension of each subseti€ equal 10 gedicated to the selection @fpt and ppt in equations (7)
(r+1). As a consequence, the strategy discussed in §(3.13ng (12). The TF reference h, resulting from the direct



Fig.3: Test error vs resolution Fig.4: Reduced-bias detector config. (Section 3.2)
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application of the method introduced in Part 2, is shown inhere, which is based on the Structural Risk Minimization
Fig.2 (r = &); the presence of the signal component is not principle, fully exploit the structure of TF representations
very apparent because few training examples wereto advantageously reduce the VC-dimension of the
available. The design of the optimal reduced-bias TF-receiver. The obtained reduced-bias detectors, by virtue of
based detector was also performed. The competitiontheir adapted resolution in the TF domain, can yield a
between VC-dimension and training error results in a substantial improvement in generalization performances.
minimum of the error test, obtained for r equal to 14 However, this efficient process is computationally
(Fig.3). For this optimal value of r, the TF reference h is expensive, and further works on discovering practical

presented in Fig.4: it has roughly the same structure as thalgorithms are needed.

WD of the signal to be detected (Fig.1), and strongly
synthesizes the information carried by the TF
representation. [

The generalization performance of these detectors were
estimated by applying them to 2000 realizations each of
signal present or absent. Using the quadrature matcheéZ]
filter, which constitute the optimal detector, the error (3
probability was 8.50%. The performance of the receiver
resulting from the method introduced in Part2 was [4]
11.05%. This result must be compared to 8.90% obtained
with the reduced-bias TF-based detector. Consequently,
these experiments clearly demonstrate the ability of thel®]
proposed method to closely approach the performance 0[6
the optimal quadratic detector, even if the size of the ]
training set is relatively small compared to the problem
dimension.

[7]

5. DISCUSSION [8]
Bilinear TF representations have been widely used for
detection in non-stationary environments. However, most
of the TF-based detectors which have been proposed arf\g]
linear structures operating in the TF domain, merely
equivalent to quadratic receivers usually defined in the
time domain. Moreover, their design requires substantial
knowledge of signals whereas phenomena are poorly{10]
understood in many applications. In order to improve the
design stage, we have developed a method of determining
the optimal TF-based detector, i.e. which minimizes an
estimation of the error probability, directly from labeled [11]
training data. Unfortunately, it is well-known in Pattern 12]
Recognition that sample-based classifiers can have Iargé
biases, particularly when the size of the training set is
small against the data dimension. The method developed
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