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ABSTRACT

The decorrelating and the linear, minimum mean-squared error
(MMSE) detector for asynchronous code-division multiple-access
communications ideally are infinite memory-length detectors. Fi-
nite memory approximations of these detectors require the inver-
sion of a correlation matrix whose dimension is given by the prod-
uct of the number of active users and the length of the process-
ing window. With increasing number of active users or increasing
length of the processing window, the calculation of the inverse may
soon become numerically very expensive. In this paper, we prove
that the decorrelating and the linear MMSE detector can both be
realized by linear multi-stage interference cancellation algorithms
with ideally an infinite number of stages. It will be shown that
for serial multi-stage interference cancellation, depending on the
signal-to-noise ratio and the number of active users, only a few
stages are necessary to obtain the same BER performance as the
ideal detectors. Thus, the complexity can be reduced considerably.

1. INTRODUCTION

For asynchronous code-division multiple-access (CDMA) systems
a number of linear multiuser detectors have been proposed, e.g.
the decorrelator [1] and the linear, minimum mean-squared error
(MMSE) detector [2]. These detectors require the inversion of a
correlation matrix whose dimensiond equals the number of active
usersK in case of bit-synchronous transmission. The easiest way
of obtaining the corresponding detectors for asynchronous trans-
mission is to assume that the data can be partitioned into blocks
of a certain finite lengthM and to view the resulting problem as
the detection of an equivalent number ofMK synchronous users.
Thus, the dimension of this correlation matrix is proportional to
the block length. To achieve the partition into finite blocks, reg-
ular symbol intervals have to be left without transmission, which
degrades the the spectral efficiency and requires some form of syn-
chronism between the users.

This can be avoided in case of continuous transmission which
can be viewed as the limitM ! 1. Then the above detectors
require infinite memory length. Thus, they can be referred to as
IIR detectors [3]. The truncation of IIR detectors was proposed
in [3, 1] as a way of designing finite memory length (FIR) detec-
tors. Whereas the so-called truncated detectors ignore the edge
effect caused by symbols outside the observation window ofM
data symbols, the detectors can also be optimized with respect to
the finite observation window [3].

However, in all of the above approaches the dimension of the
correlation matrix is increased by a factor ofM for asynchronous

transmission compared to synchronous transmission, which sig-
nificantly increases the computational complexity of matrix inver-
sion. This is due to the fact that the above detectors are derived
in the time domain. In [1] and [4],z andD-transform approaches
were used, respectively, to derive the IIR detectors. In these ap-
proaches the dimension of the correlation matrix is not increased1.

In [5], a similar Fourier-transform approach was used to show
that linear multi-stage interference cancellation schemes are
asymptotically equivalent to decorrelating detector, which means
that they approach the IIR decorrelator as the number of stages
tends to infinity. In this paper, we will generalize this approach to
also include the linear MMSE detector. Moreover, we investigate
the convergence speed, that is the number of stages necessary to
approach the IIR detector.

In Section 2, we review the main results of [1] and [4]. In Sec-
tion 3, we show that linear multiuser detectors can be realized by
linear interference cancellation schemes. The computational com-
plexity is considered in Section 4. In Section 5, we investigate the
convergence speed while the conclusions are given in Section 6.

2. LINEAR MULTIUSER DETECTORS

We consider a DS-CDMA system withK users for the limiting
caseM !1. Let the receiver input signal be:

r(t) =

KX
k=1

1X
m=�1

ak(m)
p
wksk(t�mT��k) + n(t); (1)

wheren(t) is white Gaussian noise with power spectral density
�2, ak(m) 2 �1 is the binary data signal,

p
wk is the amplitude,

sk(t) is the spreading signal and�k is the time delay of thek-th
user. The data symbols are assumed to be equally probable and
mutually independent. The spreading signalssk(t) are given by
sk(t) =

1p
N

PN�1
n=0

sk(n) rect(t�nTc); where rect(t) is defined
as rect(t) = 1 for 0 � t � Tc and rect(t) = 0 otherwise. Tc
is the duration of a chip andT = NTc is the code period. We
suppose that the spreading signals have unit energy, e.g., spreading
sequences withjsk(n)j = 1. The received signal is first fed into
a bank ofK filters matched to the users’ spreading sequences and
sampled at time instances�k +mT :

yk(mT+�k) =

Z mT+T+�k

mT+�k

r(t)sk(t�mT��k)dt: (2)

1The Fourier-transform of ad � d matrix sequence yields ad � d

frequency-dependent matrix. Of course the space of frequency-dependent
matrices is1-dimensional. This corresponds to the fact that the IIR de-
tectors can be described by such matrices.



For simplicity and without loss of generality, let us assume an or-
dering on the time delays�k such that0� �1 � �2: : :� �K <T .
Let y(m) be the output sequence of the bank of matched filters,
a(m) the data sequence. Define theK � K signal crosscorrela-
tion matricesR(m) whose entries are given by

Rkj(m) =

Z 1

�1
s�k(t� �k)sj(t�mT � �j)dt: (3)

R(1) is an upper triangular matrix with zero diagonal,R(m) =
0 8jmj > 1 andR(m) = R(�m)H . Moreover, letW =
diag([

p
w1; :::;

p
wK ]): With this notation anda(�M � 1) =

a(�M +1) = 0, the matched filter output sequence can be ex-
pressed as

y(m) = R(�1)Wa(m+1) +R(0)Wa(m)

+R(1)Wa(m�1) + n(m); (4)

wheren(m) is the matched filter output noise process with auto-
correlation matrixE[n(m)nH(m+ j)] = �2R(j).

Using the Fourier-transform, the input-output relationship
given by equation (4) can be rewritten in terms of the power spectra
of the involved random processes. Since noise and data symbols
are assumed to be independent, the spectrum�yy(f) of y(m) is
given by

�yy(f) =WS(f)�aa(f)S(f)W +�nn(f); (5)

where the hermitian matrixS(f) is given by

S(f) = RH(1) e{2�f +R(0) +R(1) e�{2�f ; (6)

�aa(f) = I and�nn(f) = �2S(f) are respectively the power
spectra of the data sequence and the noise andI is theK�K iden-
tity matrix. The cross-spectrum between the input and the output
signal is

�ay(f) =WS(f): (7)

Linear IIR multiuser detectors areK-input K-output linear
time-invariant filters which can be described by their transfer func-
tion G(f). Thus, the spectrum ofx(m), the signal before the
sign-decision, is given by

�xx(f) = G(f)�yy(f)G(f)H : (8)

The IIR zero-forcing detector, which is referred to as decor-
relating detector in [1], completely removes the multiple-access
interference (MAI) by “inverting” the channel matrix. Therefore,
the IIR decorrelator is given by a filter with transfer function

Gd(f)=S
�1(f)=[RH(1) e{2�f+R(0)+R(1) e�{2�f ]�1: (9)

The assumption that the inverse exists, is well justified. It should
be noted thatS(f) is positive definite in this case. The signal
before the sign-decision is given by

x(m) =Wa(m) +ne(m); (10)

wherene(m) is a filtered Gaussian noise vector sequence. The
noise power of thek-th user’s noise component is

Nk= E[ne(m)nHe (m)]kk = �2
Z

1

0

S
�1(f)kk df � �2: (11)

Therefore, the probability of error for userk is given by

Pk = Q

�r
wk

Nk

�
; (12)

with the error functionQ(x) = 1p
2�

R1
x

e
�y2

2 dy.
The linear IIR MMSE detector minimizes the mean square er-

rors

MSEk = E[(ak(m)� xk(m))2]; k = 1; : : : ; K: (13)

The orthogonality principle states that for the MMSE estimate

E[(a(m+ n)� x(m+ n))yH(m)] = 0 (14)

holds for alln [4]. From (14), follows�xy(f) = �ay(f). Using
(5) and (7), the transfer function of the MMSE detector is given by

Gms(f) =W
�1(S(f) + �2W�2)�1: (15)

In case of a binary data signal the detector is followed by a sign-
decision device. Thus, the multiplication with the diagonal matrix
W�1 in (15) has no effect on the detected data symbols and can
be omitted. From (14), it follows that the MMSE estimate is or-
thogonal to the error signal. This can be used to find the following
expression for the MMSE of userk

MMSEk = 1� E[ak(m)xk(m)]: (16)

Since the cross-spectrum�ax =WGms(f)S(f), the MMSE of
userk can be written as

MMSEk = �2
Z

1

0

[(W 2
S(f) + �2I)�1]kkdf: (17)

The signal-to-interference ratio (SIR) is defined as the ratio of the
desired signal power to the sum of the powers due to noise and
MAI at the output of the filter [6]. It can be shown that the MMSE
solution also maximizes the SIR and that this maximum value is
given by

MSIRk =
E[xk(m)2]

E[(ak(m)� xk(m))2]
= MMSE�1k � 1: (18)

Because the MAI is not completely removed by the MMSE detec-
tor, there generally is no simple relationship between the SIR and
BER like (12) in case of the decorrelating detector. However, in [7]
it was found that the BER can be well-approximated by assuming
that the output MAI-plus-noise is Gaussian. Using the Gaussian
approximation the BER is given by

~Pk = Q
�p

MSIRk

�
: (19)

3. LINEAR INTERFERENCE CANCELLATION

In this section, we will show that linear interference cancellation
schemes are asymptotically equivalent to the linear multiuser de-
tectors described in the previous section. A linear interference
cancellation scheme is one where no hard-decisions, e.g., sign-
decisions, are made in any of the stages, but there is only one de-
cision device after the interference canceller. In [8], it was shown
that multi-stage serial interference cancellation is asymptotically
equivalent to the decorrelator for synchronous CDMA. In [5], it



was found that both multi-stage, parallel and serial interference
cancellation are asymptotically equivalent to the IIR decorrelator
for asynchronous CDMA. For linear parallel interference cancel-
lation only, this was also found independently in [9]. Here, we
generalize the approach of [5] to also include the MMSE detector.

The decorrelator and the MMSE detector both require the in-
version of the Fourier-transformC(f) of a correlation matrix
which is respectively given by

Cd(f) = S(f); Cms(f) = S(f) + �2W�2: (20)

Note that the decorrelator and the MMSE detector differ only in
the diagonal elements ofC(f).

The basic idea behind our derivation of the different linear in-
terference cancellation schemes is to apply an iterative algorithm
for matrix inversion to solve the following system of linear equa-
tions in the frequency domain:

C(f)X(f) = Y (f): (21)

However, an algorithm in the frequency domain would not solve
the implementation problem because it ideally would require the
Fourier-transform of a sequence of infinite length. Therefore, a
time-domain version of the algorithm is obtained by applying the
inverse Fourier-transform to each of the step equations of the fre-
quency-domain algorithm. The resulting time-domain step equa-
tions generally require the knowledge of some future signal ele-
ments. Thus, to actually implement this algorithm an appropriate
amount of delay has to be introduced between the stages.

The simplest iterative scheme is the Jacobi iteration. Let us
consider the following splitting of the correlation matrixC(f):

C(f) = CL(f) +D +CU (f); (22)

whereCL(f) is lower triangular with zero diagonal,D is a di-
agonal matrix, andCU (f) is upper triangular with zero diagonal.
Note thatD = I for the decorrelator because the code sequences
are normalized to have unit energy, andD = I + �2W�2 for
the MMSE detector. Moreover,CL(f) = CU (f)

H sinceC(f)
is hermitian. In the frequency domain the transition fromXi(f)
toXi+1(f) is given by

X
i+1(f) = D�1

�
Y (f)� (CL(f) +CU (f))X

i(f)
�
: (23)

If kCL(f)+CU(f)k<1 for any induced matrix norm, the Jacobi
iteration converges toX1(f) = C(f)�1Y (f) for anyX0(f)
[10]. Thus, it is asymptotically equivalent to the decorrelator or
the MMSE detector. The time domain step equation is given by
the inverse Fourier-transform of (23) as

x
i+1(m) = D

�1 �
y(m)�R(�1)xi(m+1) (24)

�(R(0)� I)xi(m)�R(1)xi(m�1)
�
:

It can easily be seen that forDkk = 1 Eqn. (24) describes the lin-
ear version of the interference cancellation scheme proposed, e.g.,
in [11]. Since the signals of all users are treated in parallel in each
stage, Eqn. (24) describes a linear multi-stage parallel interference
canceller. In (24), the knowledge of future estimatesxi(m + 1)
of the previous stage is required. Thus, it necessary to introduce
a delay of one bit duration between the single stages. It should be
noted that the Jacobi iteration does not converge for all possible
C(f). Moreover, the convergence very slow. Therefore, it will
not be considered in the sequel.

The convergence of the iteration scheme can be sped up by
a scheme that is serial in-between the users because the parallel
treatment of the users in the Jacobi iteration does not use the most
recently available information. In thei-th stage of the interference
cancellation for userk, the estimates of the signals of the users
1; : : : ; k�1 of that stage can be used instead of the estimates of the
previous stage. This is the idea of the Gauß-Seidel (GS) iteration.
Thus, instead of (23) we now have

X
i+1(f) =D�1

�
Y (f)�CU(f)X

i(f)�CL(f)X
i+1(f)

�
; (25)

with time-domain step equation for userk given by

xi+1k (m) =
1

Dkk

"
yk(m)�

KX
l=k+1

Rkl(0)x
i
l(m) +Rkl(1)x

i
l(m�1)

�
k�1X
l=1

Rkl(�1)xi+1l (m+1) +Rkl(0)x
i+1
l (m)

#
: (26)

SinceS(f) is positive definite and hermitian, the GS iteration con-
verges toX1(f)=S(f)�1Y (f) [10]. The GS iteration defines
a linear multi-stage serial interference cancellation scheme. Serial
cancellers have been proposed, e.g., in [12].

In the time-domain step equation (26) for userk, the knowl-
edge of future estimatesxi+1l (m+1) of the users1; : : : ; k � 1 of
the actual stage is required. Therefore, a delay of one bit duration
has to be introduced between the calculation of the estimates for
the different users. Thus, the delay between the single stages is
equal toK times the bit duration. It is possible to reduce the de-
lay between the single stages to be equal to one bit duration if one
imposes an ordering of the users on the time delays�k such that
T > �1 � : : :� �K � 0. SinceR(�1) is upper triangular in this
case, no future estimates of the actual stage are needed. However,
the fastest convergence can usually be achieved by an ordering of
the users according to their signal strength. To avoid the large de-
lay between the stages we modify (26) by replacingxi+1l (m+1)

with xil(m+1), that is we use future estimates of the previous stage
instead of the actual stage. The resulting time-domain step equa-
tion can be implemented with a delay equal to one bit duration
between the stages. We have found this modified version of the
GS iteration to perform equally well as the original one.

4. COMPUTATIONAL COMPLEXITY

The FIR detectors require the inversion of anMK �MK cor-
relation matrix. It is reasonable to assume that, in a time-varying
environment, this matrix has to be updated everyM symbols . Not
taking into account the block structure and using the Cholesky fac-
torization the complexity would be(MK)2=6 + 3MK=2 + 1=3
multiplications/symbol. However, using the block LU factoriza-
tion [10, Sect. 4.5.1] results inM(K3=3 + 5K2) multiplications
to calculate the inverse and detectMK data symbols. Thus the
complexity isK2=3 + 5K multiplications/symbol which is inde-
pendent ofM . The iterative methods require2K2 multiplications
for the calculation of the step equation. Thus, the complexity is
2SK multiplications/symbol. Therefore, the iterative methods are
less complex if

S < K=6 + 5=2: (27)
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Figure 1: Average BER of the Gauß-Seidel Iteration,K=10.

5. NUMERICAL RESULTS

In this section, based on numerical examples, we investigate how
many stagesS are required for the GS method to achieve IIR de-
tector performance. The results are based on an asynchronous sys-
tem with perfect power control using the decorrelating detector.
The spreading sequences are randomly selected from a Gold code
of lengthN = 31. All bit-error-rates are averaged over the users
and over 1000 randomly chosen delay constellations.

In Figs. 1 and 2 the bit-error-rates are depicted for10 and15
users, respectively. The BER of the matched filter detector and
the IIR detector are also included. It can be seen thatS depends
on the SNR or the desired BER. If the SNR is less than 10 dB,
two stages are sufficient two achieve IIR detector performance,
whereas 3 stages are needed if 10 dB�SNR� 12 dB. ForK = 10
andK = 15, Eqn. (27) respectively givesS < 4:17 andS < 5.
Thus, in both cases, the GS method is more efficient than the block
LU decomposition.

6. CONCLUSIONS

We have shown that the linear decorrelating detector and the linear
MMSE detector can be realized by linear multi-stage interference
cancellation algorithms with ideally an infinite number of stages.
It was found that a parallel linear interference cancellation scheme
is equivalent to a Jacobi iteration, whereas a Gauß-Seidel iteration
corresponds to a serial linear canceller.

Numerical examples demonstrate that the number of stages re-
quired to achieve IIR detector performance depends on the number
of users, the signal-to-noise ratio, and the choice iterative algo-
rithm. For a small number of users and moderate signal-to-noise
ratios (SNR� 12 dB), only a few, typically 3, stages of the Gauß-
Seidel iteration are needed.

Thus, linear interference cancellation schemes offer a way of
implementing linear multiuser detectors very efficiently, with small
detection delay and low memory consumption.
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