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ABSTRACT

Head-related transfer functions (HRTFs) describe the spectral
filtering that occurs between a source sound and the listener's
eardrum.  Since HRTFs vary as a function of relative source
location and subject, practical implementation of 3D audio must
take into account a large set of HRTFs for different azimuths
and elevations.  Previous work has proposed several HRTF
models for data reduction.  This paper describes our work in
applying genetic algorithms to find a set of HRTF basis spectra,
and the normal equation method to compute the optimal
combination of linear weights to represent the individual
HRTFs at different azimuths and elevations.  The genetic
algorithm selects the basis spectra from the set of original
HRTF amplitude responses, using an average relative spectral
error as the fitness function.  Encouraging results from the
experiments suggest that genetic algorithms provide an
effective approach to this data reduction problem.

1. INTRODUCTION

The purpose of 3-D sound systems is to generate sound fields
that appear to emerge from specific elevations and azimuths.  To
achieve this goal, sound systems simulate auditory cues that
humans rely on to determine the positioning of a sound.  Among
these auditory cues, head-related transfer functions (HRTFs)
provide important spatial cues and are widely used in 3-D sound
systems. HRTFs describe the spectral filtering that occurs
between a source sound and the listener's eardrum.  The main
filtering elements are the pinnae (the outer ear), and the cavum
conchae (the resonant cavity).  Previous research on HRTFs has
focused on the magnitude component, and the results suggest
that HRTF magnitudes vary as a function of frequency, source
position, and subject. HRTF magnitudes vary rapidly as a
function of frequency, with tremendous peaks and valleys.
HRTFs also vary for different source locations horizontally and
vertically due to the asymmetric shape of the pinnae.
Implementation of 3D audio requires a large set of HRTFs for
different azimuths and elevations.

Martens [1] and later Wightman and Kistler [2] have
investigated a mathematical model to represent HRTFs as a
linear combination of a small number of basis spectra.  Each
particular HRTF magnitude function was expressed as the sum
of weighted spectra.  HRTF phase was modeled by assuming
that HRTFs were minimum phase functions and that inter-aural

phase differences could be approximated by a simple time delay.
Wightman and Kistler used five basis spectra to effectively
construct 5300 HRTFs, achieving a 30-fold data reduction.  The
most important step in this model is finding the representative
basis spectra.  Wightman and Kistler used a statistical approach,
principal component analysis (PCA), to compute the basis
spectra and weights.  One disadvantage of a statistical approach,
such as PCA, is that the basis spectra have no physical correlate,
but are statistically constructed. This makes the basis spectra
potentially difficult to interpret and modify.

In this work, we apply genetic algorithms (GAs) to find the
basis spectra and normal equation method to find the weights.
GAs [3,4] are effective in search and combinatorial optimization
problems, using a fitness-directed random search to explore the
search space.  Section 2 of this paper outlines our genetic
algorithm-based HRTF model.  Section 3 presents our results,
and section 4 concludes the work with suggestions for future
work.

2. HRTF MODELING WITH
GENETIC ALGORITHMS

Figure 1 outlines our procedure for HRTF modeling.  We used
the KEMAR measurements from MIT [5] as source data.  The
data set consisted of impulse responses of a dummy head across
710 different positions at elevations from -40 degrees to +90
degrees.  Each impulse response was 512 samples long. The
measurements included different numbers of equally-spaced
azimuths at each elevation. For example, at elevation -40, there
were 56 different azimuths sampled every 6.4 degrees. At
elevation -30, 60 different azimuths were sampled every 6
degrees. Table 1 lists the number of different azimuths for each
elevation.

Table 1. Number of Equally-Spaced Azimuths for Each
Elevation.

Elevation -40 -30 -20 -10 0 10 20 30 40
Number of
Equally-
Spaced
Azimuths

56 60 72 72 7272 72 60 56

50 60 70 80 90
45 36 24 12 1



Figure 1. HRTF Modeling with Genetic Algorithms.

We used the data from the left "normal" pinnae of the MIT
dummy head in our experiment.  The impulse responses were
passed through a 4096-point FFT to obtain the HRTFs.  To
reduce the data size, we sampled the HRTFs at every semitone
(frequency ratio 1:21/12) from 13.75 Hz to 22050 Hz, with the
exception of using the frequency ratio 1:21/96 in the range 6000
Hz to 12000 Hz.  Many important spectral fluctuations occur in
the 10,000 Hz vicinity, which is why we used extra points in
that range. The result is 207 frequency points for each HRTF.
We tried to obtain samples evenly in each critical band as well
as retain the spectral variations of the HRTF.

After the FFT and sampling, we calculate and remove the mean
function of the HRTFs across all 710 positions from the original
HRTFs.  The mean HRTF represents the subject-dependent and
direction-independent features of the HRTF data set.  After
removing the mean, each function represents primarily
direction-dependent spectral features, and is called the

directional transfer function (DTF).  The set of 710 DTFs are
then passed to a GA for selection of representative basis spectra.

Reconstructing DTFs requires finding an appropriate set of basis
spectra and a weight matrix.  Each of the DTFs is represented as
a linear combination of basis spectra.  If we have the same
number of basis spectra as DTFs, then we can reconstruct the
DTFs exactly as the original.  We only use a few basis spectra in
practice to achieve the goal of data reduction.  In our
experiment, we use only 3 basis spectra to represent the 710
DTFs.  The HRTFs can be obtained from the reconstructed
DTFs by simply adding back the HRTF mean.

The problem can be viewed as the following matrix equation:

(1)

where A is the matrix containing the basis spectra column-by-
column, W is the weight matrix containing the weights used in
the linear combination of the DTFs for different positions, and B
is a matrix consisting of DTFs at different positions arranged
column-by-column.  Expanding equation (1) gives the following
equation:

 (2)

Here Nbasis is the number of basis spectra, NDTF is the number
of different DTFs at different positions, and Nfreq is the number
of frequency points in the DTFs.  For our data, NDTF=710 and
Nfreq=207.

The corresponding system equation is as follows:

(3)

In this equation, bk,r  is an approximation of the kth frequency
point in the rth DTF.

Assuming we have found the basis spectra using the GA, we can
use the normal equation method [6] to determine the set of
weights wj,r which approximate bk,r in the least-squares senses,
that is, the wj,r that minimize the squared error:

(4)

in the rth DTF.  Since each DTF is independent, we can solve
for it without consideration of the other DTFs.

To determine the basis spectra, we used a genetic algorithm.
One possible approach is to let the GA search for the value of
each basis spectra frequency point (ak,j).  However this is an
extremely large search space, and most solutions give bad
results.  An alternative method is to let the GA select the most
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representative DTFs from the original DTF set, and use these
representatives as the basis spectra.  We assign an index to each
DTF, and use the GA to find the indices of the representative
DTFs.  We encoded the indices into the GA bitstring as shown
in Figure 2.

Figure 2. GA Bitstring Encoding.

If the GA picks index Sk as one of the basis spectra, and Sk is the
DTF at elevation i and azimuth j, then it will be used with the
other basis spectra to approximate the DTFs.

We use a relative error to measure the quality of reconstructed
DTFs compared to the original DTFs.  The relative error guides
the GA's search for a good solution.  The relative error is
defined as the following:

(5)

where b'k,r is the rth reconstructed DTF at the kth frequency
point.  We compare the reconstructed DTF to the corresponding
original DTF at N'freq=21 frequency points (one in every ten of
the original Nfreq frequencies).  This provides a quick estimate
of the fitness during the search.  Also, only subsets of the
original DTFs at azimuths 0, 90, 180, and 270 degrees are used
in the relative error calculation.  Changes for different azimuths
are typically very gradual.  This allows the GA to consider each
side without taking too much computation, and reduces the
number of DTF comparisons to 13 x 4 + 1 = 53.

3. RESULTS
We used the GA software package GENESIS Version 5.0 [7] for
our experiments, with the parameters listed in Table 2. We
performed the experiments on a SUN SPARCstation 5.  The
turnaround time of the experiment was 10 minutes for 3 basis
spectra.

Table 3 lists the results for 3 basis spectra.  As shown in the
table, the three basis spectra are spread evenly at the azimuths
84, 180 and 320 degrees.  The results are intuitive since we
expect each basis spectrum to represent a different range of
azimuths.  However, for the elevations, the GA gave some
unexpected results.  The three basis spectra were all selected
from high elevations (40, 50 and 80 degrees) in the original -40

to 90 degree range.  The GA did not select any basis spectra
from the low elevations.

Table 2. Experiment Parameters for Genetic Algorithm.

Number of Basis spectra 2 3 4 5 6 7 8

Total Function Evaluation 5000

Population Size 80 120 160 200 240 280 320

Bitstring Length 20 30 40 50 60 70 80

Crossover Rate 0.6

Mutation Rate 0.001

Table 3. Experiment Results Using 3 Basis Spectra.

Basis Spectra Selected
(Elevation, Azimuth) Index
(40, 84) 550

(50, 320) 633

(80, 180) 704

Figure 3 shows some of the reconstructed results.  The solid
lines show the original HRTFs and the dotted lines show the
reconstructed HRTFs.  The HRTFs of Figure 3-1 are from
elevation -40, azimuth 186.  This location is far away from any
of the basis spectra.  As shown in the figures, our method gives
a very close approximation to the original, although there are
some small differences in the spectral regions with lots of peaks
and valleys. Figure 3-2 shows a comparison at elevation -30,
azimuth 336.  This location has the worst relative error between
the original and re-constructed HRTF.  As shown in Figure 3-2,
there are several larger deviations between the original and
reconstructed functions in the spectral regions from 6kHz to
11kHz.  However, overall the reconstructed function basically
matches the original.

We have performed experiments using 5 basis spectra, and
Table 4 shows the results.  In this case the GA selected basis
spectra from low elevations (-20, -10) as well.  This improved
the re-construction of low-elevation HRTFs.

Table 4. Experiment Results Using 5 Basis Spectra.

Basis Spectra Selected
(Elevation, Azimuth) Index
(-20, 5) 118

(-10, 130) 215

(-10, 180) 225

(40, 96) 552

(70, 285) 693

Figure 4 shows the relative errors and data reduction plotted
against number of basis spectra.  Data reduction is given by the
amount of original data over the amount of reconstructed data.
As expected by using more basis spectra we achieve better
relative error but less data reduction.  Also, using more than 3
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basis spectra gives a smaller improvement in relative error for
an additional basis spectra.

4. SUMMARY

We have introduced the use of genetic algorithms to HRTF
modeling.  The GA determines the basis spectra and normal
equation method determines the weights.  We have
implemented and tested the method.  Empirical results show
that with only 3 basis spectra we were able to reconstruct
HRTFs closely resembling the original HRTFs, including most

of the spectral variations of the originals, while achieving a 50-
fold data reduction.

Figure 4. Relative Errors and Data Reduction plotted
against Number of Basis Spectra.

There are several related research topics.   We might improve
the results by designing a better fitness function in the GA
optimization.  For example, we can incorporate our prior
knowledge about the typical shape of HRTFs into the fitness
function.  Moreover, we can expand our data set to include
measurements from more subjects and locations.  With the
symmetry of GAs, we can easily parallelize the system to handle
large data sets.
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Figure 3-1. Elev:-40 Azim: 186

Figure 3-2. Elev:-30 Azim: 336

Figure 3. Comparisons between the Original HRTFs
(Solid Lines) and the Reconstructed HRTFs (Dotted
Lines).


