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ABSTRACT

An acoustic mismatch between a given utterance and a model de-
grades the performance of the speech recognition process. We
choose to model speech by Hidden Markov Models (HMMs) in
the cepstrum domain and the mismatch by a parametric function.
In order to reduce the mismatch, one has to estimate the parameters
of this function. In this paper, we present a frame synchronous es-
timation of these parameters. We show that the parameters can be
computed recursively. Thanks to such methods, parameters varia-
tions can be tracked. We give general equations and study the par-
ticular case of an affine transform. Finally, we report recognition
experiments carried out over both PSTN and cellular telephone
network to show the efficiency of the method in a real context.

1. INTRODUCTION

In recent years, the problem of robustness of automatic speech
recognition has been a great subject of interest. An efficient way
to deal with robustness is to take into account the HMMs used
to perform recognition and to model disturbances by a mismatch
function. The observation associated with the HMM are the cep-
strum coefficients since they efficiently extract short-term infor-
mation from the speech signal. As stated in [6], this mismatch
function can be viewed in the signal space, in feature space or in
model space. Thus, we can define a different transform in each
space but there exists a strong interaction between those different
mismatch functions. For instance, within a Gaussian framework
(i.e. Gaussian state dependent densities in the HMM), it can eas-
ily be seen that adapting data thanks to a linear transformation is
equivalent to adapt both mean and variances in a constrained way.
Up to now, studies have essentially focused on off-line methods
relying on the well known expectation-maximization (EM) algo-
rithm. Among them, linear regression is a popular technique: in [4]
the model means are adapted thanks to linear regression and in [7]
both means and variances are adapted thanks to the same tech-
nique. The main drawback of this method is the necessity to col-
lect data on the new environment. However, on-line methods are
becoming available such as in [2]. But all this methods are feasible
or interesting if data are stacked in blocks to perform estimation.
In this work, we process data in a frame-synchronous way. This
allow to track the variations of the mismatch parameters. A way
to achieve this goal was formerly presented in [5]. It was proposed

in [3] and in [9] to base the estimation on a different criterion (i.e
maximizing the Kullback-Leibler Information) and on a stochas-
tic algorithm to design a frame-synchronous algorithm. In [9], the
algorithm was applied to identify a FIR (finite impulse response)
system and in [3] to perform on-line estimation of the parameters
of an HMM. Here we use this framework to estimate the parame-
ters of the mismatch function. We show from a theoretical point of
view that we can deal with various kinds of functions (especially
non linear functions) and that the parameters of the functions are
updated recursively after each frame. On the contrary to [5], there
is no need to solve an equation at each step of the algorithm.
In section 2, we present the theoretical framework. Then, in sec-
tion 3, we show how this general framework can be applied to the
case of an affine transform. In section 4, we report convergence
measures of the proposed algorithm and results of recognition ex-
periments. Finally in section 5, we give some conclusions and
prospects.

2. THEORETICAL FRAMEWORK

2.1. Global Framework

Let Yt = y0; : : : ; y� ; : : : ; yt be a sequence of noisy observations.
The equalization function is defined byxt = f�(yt) where the
sequenceXt = x0; : : : ; x� ; : : : ; xt is distributed according to an
HMM �, which hasN states, and� is a vector of sizep containing
the equalization function’s parameters.x� andy� are assumed to
be scalar. LetSt = s0; : : : ; s� ; : : : ; st denotes a partial state se-
quence. The state dependent distributions are assumed to be Gaus-
sian with mean�i and variance�2i in statei. The extension of the
proposed method to HMMs with Gaussian mixtures is straightfor-
ward. The Kullback-Leibler Information is defined by:

J(�) = Eflog(p(Ytj�)j�
0)g (1)

where�0 denotes the exact parameter of the mismatch function.
It is shown in [8] and in [3] that it is possible to generate a se-
quencef�tg that increases the Kullback-Leibler information; the
sequencef�tg converges to the true parameter�0. These values
are generated in the following way:

�t+1 = argmax
�

Qt+1(�t; �) (2)



with �t = (�0; : : : ; �t) and:

Qt+1(�t; �) = Eflog(p(Yt+1; St+1j�)jYt+1;�tg (3)

2.2. Stochastic Algorithm

We define the sequential variables:

�� j���1
(i) = p(Y� ; s� = ij���1) (4)

�� jt;���1
(i) = p(Y t

�+1js� = i;���1) (5)


� jt;���1
(i) = P(s� = ijYt;���1) (6)

with Y t
�+1 = y� ; : : : ; yt and� � t. The computation of those

variable is detailed in [3]. Thanks to those variables we are going
to computeQt+1(�t; �) (In the following equations, we will omit
additive terms that do not depend on�). It can easily be shown
that:

Qt+1(�t; �) =

t+1X
�=1

L� jt+1(���1; �) (7)

with:

L� jt+1(���1; �) = �
1

2

NX
i=1


� jt+1;���1
(i)

(f�(yt)� �i)
2

�2i

+log(jf 0�(yt)j) (8)

wheref 0�(yt) =
@f�(y)
@y

(yt). � is computed according to the fol-
lowing stochastic algorithm:

�t+1 = �t + (It+1(�t))
�1
S(�t; yt+1) (9)

with :

S(�t; yt+1) =
@Lt+1jt+1(�t; �)

@�

����
�=�t

(10)

and with the Fisher Information Matrix :

It+1(�t) = �
@2Qt+1(�t; �)

@�2

����
�=�t

(11)

Let us compute these two values:

S(�t; yt+1) = �mt+1jt+1(�t; �)
@f�(yt)

@�

����
�=�t

+
1

f 0�(y� )

@f 0�(y� )

@�

����
�=�t

(12)

with m� jt+1(���1; �) =
PN

i=1

� jt+1;���1

(i) (f�(y� )��i)
�2
i

. In

the expression ofS(�t; yt+1), it should be noted that
f�t

(yt+1)��i

�2
i

represents the difference between the modified current frame the
mean of Gaussiani multiplied by the corresponding precision.
The frame is modified according to the estimated value of� at
time t. mt+1jt+1(�t; �) is the conditional expectation of the pre-
vious value with respect to the estimated MAP state probability
density at timet. This term is a weight of the gradient vector
@f�(yt)

@�

��
�=�t

. Therefore the first term in equation 12 tends to ap-
proach the filtered frame at timet towards the mean of the most
probable state. The second term in 12 prevents the algorithm from

compressing the whole space by settingf�(yt) to the mean of the
most probable state at timet. Moreover:

It+1(�t) =

t+1X
�=1

(
m� jt+1(���1; �)

@2f�(y� )

@�2

����
�=�t

+n� jt+1(���1; �t)
@f�(y� )

@�

����
�=�t

@f�(y� )

@�

����
T

�=�t

�
1

(f 0�t(y� ))
2

@f 0�(y� )

@�

����
�=�t

@f 0�(y� )

@�

����
T

�=�t

+
1

f 0�t(y� )

@2f 0�(y� )

@�2

����
�=�t

)
(13)

with n� jt+1(���1; �) =
PN

i=1


�jt+1;���1
(i)

�2
i

andT denoting

the transpose operator.

2.3. Approximations

The computation ofIt+1(�t) is very difficult and cannot be achie-
ved in practice without making some approximations. First, we
cannot compute
� jt;���1

(i) for everyt � � . In [3], 
� jt;���1
(i)

is replaced by the fixed-lag variable
� j�+�;���1
(i) where� rep-

resents the future frames taken into account to estimate thea pos-
teriori distributions of the HMMs’ states. In our particular case
we set� = 0 which is the filtered Markov state estimate. One
should also notice that after doing this,It+1(�t) is still a sum over
� of terms of the kindg(�t; y� ). Therefore for each new value of
�t, one should compute the entire sum from the beginning. One
solution might be to replaceg(�t; y� ) by g(�� ; y� ). This formula
can also be simplified ifg(�t; y� ) is separablei. e. g(�t; y� ) =
g�(�t)gy(y� ), g�(�t) can be factorized in the sum. We will see in
section 3 that in the case with an affine transform, all functions are
separable. Finally, as stated in [3],(It+1(�t))

�1 in equation 9 can
be replaced byKtIp. Ip denotes the identity matrix of orderp and
Kt is any sequence of positive numbers that satisfies:

limKt = 0

1X
t=1

Kt =1

1X
t=1

K
2
t <M <1 (14)

Moreover, we will not compute the forward variable: we will make
the Viterbi assumption and replace the summation by taking a
maximum. By doing this, we also avoid numerical problems that
appear in the computation of the forward variables. To compen-
sate for the absence of knowledge of the future, we will maintain
several estimations of� along each path as it was proposed in [5].

3. APPLICATION TO AN AFFINE TRANSFORM

After developing the general framework, we show how this method
can be applied to the case of an affine transform which was re-
ported to be of interest in [4] and in [7]. Here the mismatch
function is f�(yt) = ayt + b, with � = [b; a]T . Hence, we
havef 0�(yt) = a. We have to compute the following deriva-

tives: @f�(yt)
@�

= [1; yt]
T ,

@f 0
�
(yt)

@�
= [0; 1]T , @2f�(yt)

@�2
= 02;2 ,



@2f 0
�
(yt)

@�2
= 02;2. 02;2 is the null matrix of order 2. We then de-

duce:

S(�t; yt+1) = �

�
mt+1jt+1(�t; �)

mt+1jt+1(�t; �)yt+1 � 1
at

�
(15)

mt+1jt+1(�t; �) =
PN

i=1

t+1jt+1;�t

(i)
atyt+1+bt��i

�2
i

in this par-

ticular case. Let us denoteC� =
PN

i=1

� jt+1;���1

(i) 1
�2
i

(we

haveC� > 0). We can rewrite the Fisher Information Matrix:

It+1(�t) =

2
66664

t+1X
�=1

C�

t+1X
�=1

C� y�

t+1X
�=1

C� y�

t+1X
�=1

C� y
2
� +

t+ 1

a2t

3
77775 (16)

The matrix determinant is:

�t+1 =
X

1��<� 0�t+1

C�C� 0 (y� � y� 0 )
2 +

t+1X
�=1

C�
t+ 1

a2t
(17)

This determinant is non-negative. Thus the matrix is always in-
vertible and since it is of order 2, it can be expressed as follow:

It+1(�t)
�1 =

1

�t+1

2
66664

k+1X
�=1

C� y
2
� +

t+ 1

a2t
�

t+1X
�=1

C� y�

�

t+1X
�=1

C�y�

t+1X
�=1

C�

3
77775
(18)

Recursion on�t = [bt; at]
T can be easily written. If we take a

simpler equalization function,xt = f�(yt) = yt + b with � = b

and if we make the Viterbi assumption as proposed in 2.3 it can
easily be shown that along the pathSt+1:

bt+1 = bt �
1Pt+1

�=1
1

�2s�

yt+1 + bt � �st+1

�2st+1
(19)

This expression is equivalent to:

bt = �

Pt

�=1

yt��s�
�2s�Pt

�=1 �
2
s�

(20)

It is to be noticed that we have the same expression forb as the one
given in [5].

4. EXPERIMENTAL RESULTS

4.1. Convergence Measures

We have verified on an example the convergence properties of the
proposed method. The HMM chosen is in fact a mixture of two
Gaussians with equal weight12 . The first one has a zero mean and
a standard deviation of 2. The second one has a mean of 3 and a
standard deviation of 1. The true values of the affine transform are
a = 3 andb = �1. The results obtained thanks to the proposed
algorithm (referred to KL Estimation on the figure) are compared
to the results obtained by EM computation of the parameters (re-
ferred to EM Estimation on the figure) thanks the algorithm pro-
posed in [6]. They are also compared to the results (referred as

MUSE on the figure) obtained by the technique proposed in [5].
For the batch EM algorithm, we perform 5 iterations of the EM
algorithm every 10 observations (we take into account all obser-
vations from the beginning). In the proposed method and for the
exact Maximum Likelihood estimation along each path (MUSE),
we update the parameters for the 100 most likely paths and we
plot the parameters corresponding to the most likely path at timet.
All results appear on figure 1. For the three methods, we make the
Viterbi approximation, which leads to biased estimated values. We
can see that the two methods converge to the same point. On the
figure, the distinction between the curves corresponding to the two
frame-synchronous method cannot be made except at the begin-
ning of the estimation. On the studied sample, the KL Estimation
is smoother than the MUSE Estimation.
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Figure 1: Convergence of Parameters of the Function.

4.2. Models and Database

The technique was tested on a digit database. This database was
recorded on both PSTN and GSM network (European cellular tele-
phone network). This database contains hundreds of call made by
different speakers from different regions of France. The whole
database contains thousands of utterances. For cellular telephone
network recordings, we distinguish three conditions:

� GSM1: indoors and stopped car GSM recordings.

� GSM2: running car GSM recordings.

� GSM3: outdoors GSM recordings.

The model used are 30-state HMMs with Gaussian distributions.
Feature vectors are composed of the first 8 cepstral coefficients,
energy and their first and second order derivatives, thus the size
of the feature vector is 27. The covariance matrices are diago-
nal, therefore the previous framework can be applied on each di-



mension of the feature vector separately. The system works in a
speaker-independent mode.

4.3. Speech Recognition Results

In the results presented below, the model training is performed on
half of the data recorded over PSTN and recognition experiments
are performed on the other half of PSTN data and the GSM data.
On figure 2, we plotted the recognition error rate versus the differ-
ent testing conditions. We compared the results obtained thanks
to the proposed method (referred as KL Linear Regression on the
figure) to the baseline results (i. e. without adapting data). We
also compared these results to those obtained thanks to a previous
frame-synchronous linear adaptation presented in [1] (referred as
MUSE linear regression on the figure). This frame-synchronous
linear adaptation was done thanks to the method proposed in [5].
We can see that both frame-synchronous affine transforms lead to
large recognition improvements. Those improvements are almost
the same for these methods. Besides, in current implementations,
the computational cost for both methods is the same.
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Figure 2: Error rate on the digit vocabulary with a PSTN-trained
model.

5. CONCLUSION

In this article we presented a new way to perform frame-synchro-
nous adaptation of data. We gave a general theoretical framework.
We developed these equations in the case of a linear transform.
Future works may include the study of non-linear functions, the
ability of the proposed method to track perturbation. This work
can also be easily extended to the case of parameters that depend
on the state, this allow to have different linear transform and thus
approximating a non-linear function by a piece-wise linear func-
tion. In this case, clustering should be performed to reliably es-
timate those parameters. We show the efficiency of the proposed
method to deal with acoustic mismatch between GSM and PSTN
recordings in automatic speech recognition. Moreover appropri-
ately chosen coefficientKt defined in equation 14 may lead to
similar results with a lower computational cost.
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