
ANISOTROPIC DIFFUSION
AND LOCAL MONOTONICITY

Scott T. Acton
School of Electrical and Computer Engineering

Oklahoma State University
Stillwater, Oklahoma 74078

sacton@okstate.edu

ABSTRACT

This paper investigates the relationship between anisotropic
diffusion and local monotonicity. A diffusion technique that has
locally monotonic root signals is presented. The enhancement
algorithm rapidly converges to a locally monotonic signal of the
desired degree. It is shown that the diffusion coefficient used here
is the only formation that guarantees idempotence for locally
monotonic signals.  The signals resulting from locally monotonic
diffusion are closer to the original signals than the corresponding
median root signals. Furthermore, the diffusion algorithm does
not have a difficulty with alternating signals, as does the median
filter. In contrast to other anisotropic diffusion techniques, the
diffusion method given here does not preserve outliers and does
not require a gradient magnitude threshold in the diffusion
coefficient.

1. INTRODUCTION

The success of a signal enhancement technique depends upon the
metric used to evaluate signal smoothness. Qualitatively, an
enhancement process is desired that eradicates noise while
preserving information-rich signal transitions – the edges. For
discrete signals, the traditional notion of evaluating smoothness
by continuity does not apply. Moreover, limiting the
instantaneous rate of change in a signal leads to destruction of the
signal edges.

The smoothness of a discrete signal may be assessed by
computing its degree of local monotonicity. Locally monotonic
signals are nonincreasing or nondecreasing within all contiguous
subsequences of specified lengths. Therefore, local monotonicity
limits the oscillations in the signals without constraining the
magnitude of signal transitions. Specifically, a length-N signal I
is locally monotonic of degree d (or LOMO-d) if each contiguous
subsequence of length d (e.g., {I(x), I(x+1), … , I(x+d-1)} is
monotonic. Every signal is LOMO-2, and LOMO-N is the
highest degree possible. The lomotonicity of a signal is the
highest degree of local monotonicity maintained by the signal. Of
course, for d > e, a LOMO-d signal is also LOMO-e.

The power of local monotonicity was first discovered in the
analysis of root signals produced by the median filter [6]. Since
that time, Restrepo and Bovik [4] and Sidiropoulos [5] have
developed methods to solve the LOMO regression problem. In
this framework, the computation of a LOMO signal that
resembles the original (and possibly noisy) signal is treated as an

optimization problem. This paper investigates the creation of
LOMO signals via a simple adaptive diffusion mechanism.

2. DIFFUSION

Diffusion processes implemented by partial differential equations
are useful for enhancing signals and producing a family of signal
descriptions that form a scale-space. Anisotropic diffusion
algorithms are distinguished by the ability to avoid diffusion (and
thus smoothing) across signal edges [3]. The rate of diffusion is
controlled by a diffusion coefficient, which is typically a
decreasing function of gradient magnitude. For continuous-
domain signals, the diffusion process may be modeled by
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where ∇ is the gradient operator, div is the divergence operator
(div x = ∇•x), c(x) is the diffusion coefficient at location x and
I(x) is the signal intensity. For discrete-domain signals, the PDE
of (1) may be discretized by the following Jacobi iterate:
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where T∆  is the time step, t represents iterations, p enumerates
the diffusion paths (directions), and Ω is the number of diffusion
paths. For 1-D signals, we can utilize a simplified expression:
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where )(xI e∇  and )(xI w∇  are differences with respect to the

“eastern” and “western” neighbors, defined by
)()()( xIhxIxI ee −+=∇ (4)

and
)()()( xIhxIxI ww −−=∇ . (5)

eh  and wh  are the sample spacings used to estimate the

directional derivatives in the eastern and western directions,
respectively.

A number of diffusion coefficients have been explored in the
literature. Traditionally, the coefficients take the form of [3]
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where k is an gradient magnitude threshold and determines which
edges will be retained in the diffusion process. The parameter k is



difficult to define analytically for general application. In addition,
diffusion coefficients of the form of (6) preserve outliers due to
noise where the outliers have large gradient magnitudes. To
correct this limitation, new diffusion coefficients have been
proposed [1] that use a pre-smoothed image to estimate the
gradient magnitudes. This approach, however, introduces a linear
diffusion process into the nonlinear diffusion process, limiting
edge retention and localization.

Diffusion coefficients have been designed that allow the diffusion
operation to converge to a constant or piecewise constant signal
[7]. An anisotropic diffusion algorithm that converges to LOMO
signals has not yet been explored.

3. LOCALLY MONOTONIC DIFFUSION

Consider the following diffusion coefficient function:
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Given the restriction that the diffusion coefficient be a smooth
and nonincreasing function of gradient magnitude, we must
modify (7) for the cases 0)( =∇ xI w  and 0)( =∇ xIe . We set

)()( xIxI ew ∇←∇  in the case of 0)( =∇ xI w , and

)()( xIxI we ∇←∇  when 0)( =∇ xIe . The case where both

differences are zero does not affect the diffusion operation. If (7)
is substituted into (3), we have
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This simple iterate implements diffusion to a locally monotonic
signal – LOMO diffusion. The lomotonicity of the root signal
depends on the sample spacing used to estimate the gradient
magnitude values. For example, if 1=eh  in (4) and 1=wh  in

(5), (8) converges to a LOMO-3 signal. If 1=eh  and 2=wh , a

LOMO-4 diffusion algorithm is produced. Higher degrees of
lomotonicity may be achieved by the use of multiple passes with
different sample spacings.

For input signal I , let the signal that results from iterating (8) to a
root signal be denoted by ld(I , wh , eh ). Then let )(ld Id
denote a diffusion that results in a LOMO-d (or greater) signal.
Then the lomo-3 diffusion can be given by:

)1,1,ld()(ld3 II = . (9)

LOMO-4 signals are produced by
)2,1,ld()(ld4 II = . (10)

Higher degree LOMO signals are computed using
( )2,1),2,2,ld(ld)(ld5 II = , (11)

( )2,1),3,2,ld(ld)(ld6 II = , (12)

( )( )2,1,3,2),3,3,ld(ldld)(ld7 II = , (13)

( )( )2,1,3,2),4,3,ld(ldld)(ld8 II = , (14)

( )( )( )2,1,3,2,4,3),4,4,ld(ldldld)(ld9 II = , (15)

( )( )( )2,1,3,2,4,3),5,4,ld(ldldld)(ld10 II = , (16)

and so on. In general, when iterating toward a LOMO-(2m+1)

signal, the first LOMO diffusion is ld(I , m, m). For a LOMO-
(2m+2) signal, the first operation is ld(I , m, m+1). The
subsequent diffusion is ld(I , m-1, m) and then ld(I , m-2, m-1).
This progression continues until ld(I , 1, 2) is implemented.

4. ANALYSIS

Theorem 1: For 1-D anisotropic diffusion using (3), diffusion

coefficients of the form 
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diffusion operation that is idempotent for LOMO-d ( )3≥d
signals.
Proof:  The lomotonicity of a signal may be evaluated from the
sign skeleton of its difference signal alone. If the length-3
segment centered at location x in I  is not monotonic, then

[ ] [ ])(sgn)(sgn xIxI ew ∇=∇ , and I(x) is said to be a non-

LOMO point and must be changed. Otherwise, I(x) must remain
unchanged (for idempotence on LOMO-3 signals). Assume

[ ] [ ])(sgn)(sgn xIxI ew ∇≠∇  and consider two cases:

ε+−∇=∇ )()( xIxI ew  and ε−−∇=∇ )()( xIxI ew
(where ε > 0). Using (3), we assert that:

        )()()()( xIxcxIxc wwee ∇=∇ (17)

for I(x) to remain unchanged. Combining the two cases, we have
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where ( )gc  is the diffusion coefficient for a gradient of g. Under

the stated assumptions for the diffusion coefficient, the only
solutions to (18) are diffusion coefficients of the form
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. So, only diffusion using (7) will leave the

length-3 (or greater) monotonic subsequences unchanged. Proof
that (7) will always change the non-LOMO points can be given
by examination of (8) when [ ] [ ])(sgn)(sgn xIxI ew ∇=∇ . So,

diffusion using (7) is idempotent for LOMO-3 signals. It is also
idempotent for LOMO-d signals, where d > 3, since every signal
that is LOMO-a is also LOMO-b if ba ≥ .

Corollary :  )1,1,ld(I  will converge to a LOMO-3 signal in a

finite number of iterations that is bounded above by the absolute
value of the largest difference between two neighboring samples.
Proof:  The only non-LOMO points possible are positive-going
and negative-going outliers. By inspection of (8) and use of
Theorem 1, each positive-going outlier will be reduced by a value
of 1 until it is equal to one of its neighbors. Negative-going
outliers will be incremented with each diffusion iteration. So, the
solution will converge to a LOMO-3 signal. Let
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where ( )⋅1  is the indicator function. The maximum number of

iterations needed for convergence to a LOMO root signal is
[ ]10:)(max −≤≤= NxxTτ . (20)



As mentioned, the median filter produces LOMO root signals.
The results from the literature can be summarized by Theorem 2:

Theorem 2 [6][2]: The output of a length w = 2m+1 median filter
median(I ) equals I  if and only if I  is LOMO-(m+2). Suppose that
the 1-D signal I  contains at least one monotonic segment of
length m+1. Then the w = 2m + 1 median filter will reduce a
length-N signal to a root signal that is LOMO-(m+2) in at most
(N - 2)/2 repeated passes.

From Theorem 2, we can note that the median filter will require a
significant number of iterations to reach the root signal on long
signals. Also, a restriction is placed on the initial signal – it must
contain a monotonic subsequence. With LOMO diffusion, the
convergence to a root is not dependent on the length of the
signal, and LOMO diffusion will produce a LOMO signal of the
desired degree regardless of the input signal (see Fig. 1). Unlike
traditional diffusion algorithms, LOMO diffusion does not retain
outliers due to noise (see Fig. 2).

Fig. 1:  Top: original alternating signal; Middle: w=3 median
filter result after 31 iterations (no root signal possible); Bottom:
LOMO-3 diffusion result after 11 iterations.

Fig. 2:  Top: noisy input signal; Middle: diffusion result using
(6); Bottom: LOMO-3 diffusion result (both use 85 iterations).

5. RESULTS AND CONCLUSIONS

To demonstrate the efficacy of LOMO diffusion, we generated
LOMO root signals using the median filter and LOMO diffusion
from 50 signals that were corrupted by Laplacian-distributed
additive noise (SNR=10dB). Tables I and II summarize the

results, and example output signals are shown in Figs. 3 and 4.
One general conclusion is that LOMO diffusion provides a signal
of higher lomotonicity and lower mean absolute error (MAE),
compared to the median root. The LOMO diffusion algorithm is
also quite efficient compared to the multiple iterations of the
large (high w) median filters needed for producing root signals.
Note that the signals of increasing lomotonicity form a scale-
space that varies from fine to coarse. Also compare the LOMO
diffusion of Fig. 4 to the noisy results of diffusion (using the
same number of iterations) with the diffusion coefficient (6) in
Fig. 5.

Table I:  Results from LOMO-d diffusion on 50 signals of length
N=64, corrupted with Laplacian-distributed noise.

Lomotonicity
(d)

Avg.
Lomotonicity

Avg. MAE Avg.
Iterations

3 3.00 4.27 41.52
4 4.16 6.44 48.76
5 5.40 7.60 77.24
6 6.98 8.63 82.22
7 10.92 9.91 111.54
8 15.18 10.63 114.32
9 21.90 11.80 145.66
10 26.18 12.31 133.96

Table II :  Results from computing median root signals on 50
signals of length N=64, corrupted with Laplacian-distributed

noise (d=m+2 in Theorem 2).
Lomotonicity
(d)

Avg.
Lomotonicity

Avg.
MAE

Iterations
(N-2)/2

Width
(w)

3 3.00 4.98 31 3
4 4.22 7.40 31 5
5 5.38 8.60 31 7
6 6.72 9.47 31 9
7 7.60 10.44 31 11
8 9.62 11.26 31 13
9 12.78 11.90 31 15
10 13.62 14.05 31 17

Fig. 3:  From Top to Bottom: Noisy input signal and median
filter roots for lomotonicity d=3 to d=10.



Fig. 4:  From Top to Bottom: Noisy input signal and LOMO
diffusion results for lomotonicity d=3 to d=10.

Fig. 5:  From Top to Bottom: Noisy input signal and anisotropic
diffusion results using (6). Each signal is produced using the
same number of diffusion iterations used in corresponding

signals in the Fig. 4 example.

A diffusion that converges to locally monotonic signals of the
desired degree is presented. Analysis of the 1-D convergence
properties is given and the imdempotence for LOMO signals is
discussed. The results show multi-scale signal enhancement that
preserves edges and removes impulses without additional
filtering. LOMO diffusion does not utilize an ad hoc threshold
nor does its convergence time depend on signal length. In future
work, the extension of this powerful diffusion mechanism to 2-D
signals will be analyzed. An example of LOMO diffusion on a
noisy image (Fig. 6) is given in Fig. 7.

6. REFERENCES

[1] F. Catte, P.-L. Lions, J.-M. Morel, and T. Coll, "Image
selective smoothing and edge detection by nonlinear
diffusion," SIAM J. Numer. Anal., vol. 29, pp. 182-193, 1992.

[2] N.C. Gallagher and G.L. Wise, "A theoretical analysis of the
properties of median filters," IEEE Trans. Acoust., Speech,
Signal Process., vol. ASSP-29, pp. 1136-1141, Dec. 1981.

[3] P. Perona and J. Malik, "Scale-space and edge detection using
anisotropic diffusion," IEEE Trans. on Pattern Anal. and
Mach. Intell., vol. PAMI-12, pp. 629-639, 1990.

[4] A. Restrepo (Palacios) and A.C. Bovik, "Locally monotonic
regression," IEEE Trans. Signal Process., vol. 41, pp. 2796-
2810, 1993.

[5] N. Sidiropoulos, "Fast digital locally monotonic regression,"
IEEE Trans. Sig. Proc., vol. 45, pp. 389-395, 1997.

[6] S.G. Tyan, "Median filtering: Deterministic properties," in
Two-dimensional Signal Processing: Transforms and Median
Filters, T.S. Huang, ed. New York: Springer-Verlag, 1981.

[7] Y.-L. You, W. Xu, A. Tannenbaum and M. Kaveh,
"Behavioral analysis of anisotropic diffusion in image
processing," IEEE Transactions on Image Processing, vol. 5,
pp. 1539-1553, 1996.

Fig. 6:  Noisy 64x64 subimage.

Fig. 7:  LOMO-3 diffusion result.


