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ABSTRACT optimization problem. This paper investigates the creation of
LOMO signals via a simple adaptive diffusion mechanism.

This paper investigates the relationship between anisotropic
diffusion and local monotonicity. A diffusion technique that has

locally monotonic root signals is presented. The enhancement = ) . . .
algorithm rapidly converges to a locally monotonic signal of the Diffusion processes implemented by partial differential equations

desired degree. It is shown that the diffusion coefficient used heré® useful for enhancing signals and producing a family of signal
is the only formation that guarantees idempotence for locallydescriptions that form a scale-space. Anisotropic diffusion
monotonic signals. The signals resulting from locally monotonic &!90rithms are distinguished by the ability to avoid diffusion (and
diffusion are closer to the original signals than the correspondingntS Smoothing) across signal edges [3]. The rate of diffusion is
median root signals. Furthermore, the diffusion algorithm doescontrolied by a diffusion coefficient, which is typically a
not have a difficulty with alternating signals, as does the mediandecréasing function of gradient magnitude. For continuous-
filter. In contrast to other anisotropic diffusion techniques, the 40main signals, the diffusion process may be modeled by

2. DIFFUSION

diffusion method given here does not preserve outliers and does A (x) — div[c(x)DI (x)] @
not require a gradient magnitude threshold in the diffusion ot
coefficient.

where is the gradient operator, div is the divergence operator
(div x = [ex), ¢(x) is the diffusion coefficient at locatioxn and

1. INTRODUCTION 1(x) is the signal intensity. For discrete-domain signals, the PDE
of (1) may be discretized by the following Jacobi iterate:

The success of a signal enhancement technique depends upon the a Q 0
metric used to evaluate signal smoothness. Qualitatively, an [I (X)]t+1 < U +AT XCp(X)Dl p(x)D 2)
enhancement process is desired that eradicates noise while H p=1

preserving information-rich signal transitions — the edges. For . . . .
discrete signals, the traditional notion of evaluating smoothnesgVhere AT is the time stept, represents iterationp,enumerates
by continuity does not apply. Moreover, limiting the the diffusion paths (directions), afdlis the number of diffusion

instantaneous rate of change in a signal leads to destruction of tHfathS- For 1-D signals, we can utilize a simplified expression:
signal edges. |(0)s1 < {100+ W 2ce(IT1 () + (01w,

©)

Th th f di t ignal b d b
© SMooLiness of a discrele signal Mmay be assesse \XhereD|e(X) and | y(X) are differences with respect to the

computing its degree dbcal monotonicity Locally monotonic
signals are nonincreasing or nondecreasing within all contiguouseastern” and “western” nefijpors, defined by

subsequences of specified lengths. Therefore, local monotonicity O1e(X) =1(x+hg) = 1(x) (4)

limits the oscillations in the signals without constraining the g4

magnitude of signal transitions. Specifically, a lentisignall 0 X) = | (x— —1(x 5

is locally monotonic of degreg(or LOMO-) if each contigous hw0) = 1( h".") (). (.)
subsequence of lengtth (e.g., {(X), 1(x+1), ... , I(x+d-1)} is he and hy are the sample spacings used to estimate the

monotonic. Every signal is LOMO-2, and LOM®-is the directional derivatives in the eastern and western directions,

highest degree possible. Themotonicity of a signal is the  respectively.

highest degree of local monotonicity maintained by the signal. Of

course, fod > e, a LOMO4 signal is also LOMGCe. A number of diffusion coefficients have been explored in the
literature. Traditionally, the coefficients take the form of [3]

The power of local monotonicity was first discovered in the

analysis of root signals produced by the median filter [6]. Since _ E mE] p(x) DZH

that time, Restrepo and Bovik [4] and Sidiropoulos [5] have Cp(x)—expD—[-] Kk d U ®

developed methods to solve the LOMO regression problem. In E O O H

this framework, the computation of a LOMO signal that \wherekis an gradient magnitude threshold and determines which

resembles the original (and possibly noisy) signal is treated as asdges will be retained in the diffusion process. The paratéter



difficult to define analytically for general application. In addition, signal, the first LOMO diffusion is Idi{ m, m). For a LOMO-
diffusion coefficients of the form of (6) preserve outliers due to (2m+2) signal, the first operation is Id(m, nm+1). The
noise where the outliers have large gradient magnitudes. Tasubsequent diffusion is Id(m-1, m) and then Id(, m-2, m-1).
correct this limitation, new diffusion coefficients have been This progression continues until Ig(, 2) is implemented.
proposed [1] that use a pre-smoothed image to estimate the

gradient magnitudes. This approach, however, introduces a linear 4. ANALYSIS

diffusion process into the nonlinear diffusion process, limiting

edge retention and localization. Theorem 1 For 1-D anisotropic diffusion using (3), diffusion

Diffusion coefficients have been designed that allow the diffusion gefficients of the formcg (X) = K uniquely allow a

operation to converge to a constant or piecewise constant signal |DI d (x)|
[7]. An anisotropic diffusion algorithm that converges to LOMO

signals has not yet been explored. diffusion operation that is idempotent for LOIVtD-(d 23)

signals.
3. LOCALLY MONOTONIC DIFFUSION Proof. The lomotonicity of a signal may be evaluated from the
' sign skeleton of its difference signal alone. If the length-3
segment centered at locationin | is not monotonic, then

Consider the following diffusion coefficient function:
g Sgr{Dlw(X)]:sgr‘[DIe(X)], and I(X) is said to be a non-

1
Cp(X) e — (7 LOMO point and must be changed. Otherwig®g) must remain
|D| p(X)| unchanged ifor idempotence on LOMO-3 signals). Assume
Given the restriction that the diffusion coefficient be a smooth SIMD 1w (X)]#sg01e(X)] and consider two cases:

and nonincreasing function of gradient magnitude, we must) () =-O1e(X)+e  and Opyw(X)=-0]e(X)-¢

modify (7) for the cases]l,y(x) =0 and Olg(x) =0. We set (whereg > 0). Using (3), we assert that:

Olw(X) « Olg(x) in the case of Oly(x)=0, and Ce(¥) 01 a(X) = cpy(¥ D1 w(X) 17)
Ole(X) « Oly(x) when Olg(X) =0. The case where both  for I(x) to remain unchanged. Combining the two cases, we have
differences are zero does not affect the diffusion operation. If (7) cfO1yw(x) - g|][— Orw)+ g]
is substituted into (3), we have _ "D . ][_ 0 _ ] (18)
[0k~ (100 + @/ fsorlD 0]+ sorlD OB, - =01 +ellD1w09 -

(8) where ng|) is the diffusion coefficient for a gradient@fUnder

This simple iterate implements diffusion to a locally monotonic the stated assumptions for the diffusion coefficient, the only

signal — LOMO diffusion. The lomotonicity of the root signal solutions to (18) are diffusion coefficients of the form
depends on the sample spacing used to estimate the gradient K

magnitude values. For example,lig =1 in (4) andhy, =1 in cp(X) = m So, only diffusion using (7) will leave the

(5), (8) converges to a LOMO-3 signal.if =1 andhy, =2, a P .

LOMO-4 diffusion algorithm is produced. Higher degrees of Itﬁn?tf;-S ('cl)lr glreater) r:nonot?rr]uc subi?&?cesf ltmchanged..Proof

lomotonicity may be achieved by the use of multiple passes with at (7) \_N' gways change the non- points can be given

different sample spacings. by examination of (8) whe|$gr[D I W(X)] = sgr[D I e(X)]. So,
diffusion using (7) is idempotent for LOMO-3 signals. It is also

For input signal, let the signal that results from iterating (8) to a idempotent for LOMCd signals, wherel > 3, since every signal

root signal be denoted by Id(hy, hg). Then letldg(l) that is LOMOa is also LOMObif a=b.

denote a diffusion that results in a LOMIO(or greater) signal.

Then the lomo-3 diffusion can be given by: Corollary: 1d(1,1,2) will converge to a LOMO-3 signal in a
ld3(l) =1d(1,.1LD . 9) finite number of iterations that is bounded above by the absolute

LOMO-4 signals are produced by value of the largest difference between two neighboring samples.
ld4(1) =1d(1,1,2) (10) Proof. The only non-LOMO points possible are positive-going

and negative-going outliers. By inspection of (8) and use of

Higher degree LOMO signals are computed using Theorem 1, each positive-going outlier will be reduced by a value

|d5(l)=ld(ld(l,2,2),L2), (11) of 1 until it is equal to one of its neighbors. Negative-going

ldg(1) = Id(Id(I ,2,3),12), (12) oultli?rs wi!:lbe incremfnteig&%egch difflusLiotn iteration. So, the
solution will converge to a -3 signal. Le

d7(1) = (140,39 23)1.2). A9 709 =minf0 1 (9,01 eOOlsgr{n oo lesorlin 600]

Idg(1) = 1d(id(1d(1,3,4),2,3)1,2), (14) w € 19

Ido(1) = ld(ld(ld(ld(l '4'4)'3'4)'2'3)']*2)' (19) where 1([)] is the indicator function. The maximum number of

ld10(1) = ld(ld(ld(ld(l ’4'5)'3'4)'2’3)'12)' (16) iterations needed for convergence to a LOMO root signal is

and so on. In general, when iterating toward a LOM@+D I= max[T(x) ‘0<x<N _1]_ (20)



As mentioned, the median filter produces LOMO root signals. results, and example output signals are shown in Figs. 3 and 4.
The results from the literature can be summarized by Theorem 2:One general conclusion is that LOMO diffusion provides a signal
of higher lomotonicity and lower mean absolute error (MAE),
Theorem 2[6][2]: The output of a lengtlw = 2m+1 median filter compared to the median root. The LOMO diffusion algorithm is
median({) equald if and only ifl is LOMO-(m+2). Suppose that also quite efficient compared to the multiple iterations of the
the 1-D signall contains at least one monotonic segment of large (highw) median filters needed for producing root signals.
length m+1. Then thew = 2m + 1 median filter will reduce a  Note that the signals of increasing lomotonicity form a scale-
length-N signal to a root signal that is LOM@2) in at most  space that varies from fine to coarse. Also compare the LOMO
(N - 2)/2 repeated passes. diffusion of Fig. 4 to the noisy results of diffusion (using the
same number of iterations) with the diffusion coefficient (6) in
From Theorem 2, we can note that the median filter will require aFig. 5.
significant number of iterations to reach the root signal on long
signals. Also, a restriction is placed on the initial signal — it must Table I: Results from LOMd diffusion on 50 signals of length

contain a monotonic subsequence. With LOMO diffusion, the N=64, corrupted with Laplacian-distributed noise.
convergence to a root is not dependent on the length of thé.omotonicity | Avg. Avg. MAE Avg.
signal, and LOMO diffusion will produce a LOMO signal of the| (d) Lomotonicity Iterations
desired degree regardless of the input signal (see Fig. 1). Unlikg 3.00 4.27 41.52
traditional diffusion algorithms, LOMO diffusion does not retain| 4 4.16 6.44 48.76
outliers due to noise (see Fig. 2). 5 5.40 7.60 77.24

6 6.98 8.63 82.22

7 10.92 9.91 111.54

8 15.18 10.63 114.32

9 21.90 11.80 145.66

10 26.18 12.31 133.96

Table Il: Results from computing median root signals on 50
signals of lengtiN=64, corrupted with Laplacian-distributed
noise fl=m+2 in Theorem 2).

Lomotonicity | Avg. Avg. | Iterations| Width

(d) Lomotonicity | MAE | (N-2)/2 (W)

3 3.00 4.98 31 3

4 4.22 7.40 31 5

5 5.38 8.60 31 7

Fig. 1. Top: original alternating signal; Middlev=3 median 6 6.72 9.47 | 31 9
filter result after 31 iterations (no root signal possible); Bottom; 7 7.60 10.44| 31 11
LOMO-3 diffusion result after 11 iterations. 8 9.62 11.26] 31 13
9 12.78 11.90] 31 15
W 10 13.62 14.05 31 17
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Fig. 2 Top: noisy input signal; Middle: diffusion result using
(6); Bottom: LOMO-3 diffusion result (both use 85 iterations).

5. RESULTS AND CONCLUSIONS

To demonstrate the efficacy of LOMO diffusion, we generated
LOMO root signals using the median filter and LOMO diffusion ) o ) )
from 50 signals that were corrupted by Laplacian-distributed Fig- 3: From Top to Bottom: Noisy input signal and median
additive noise (SNR=10dB). Tables | and Il summarize the filter roots for lomotonicityd=3 tod=10.




Fig. 4 From Top to Bottom: Noisy input signal and LOMO
diffusion results for lomotonicitg=3 tod=10.
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Fig. 5. From Top to Bottom: Noisy input signal and anisotropic
diffusion results using (6). Each signal is produced using the
same number of diffusion iterations used in corresponding

signals in the Fig. 4 example.

A diffusion that converges to locally monotonic signals of the
desired degree is presented. Analysis of the 1-D convergence
properties is given and the imdempotence for LOMO signals is
discussed. The results show multi-scale signal enhancement that
preserves edges and removes impulses without additional
filtering. LOMO diffusion does not utilize aad hocthreshold

nor does its convergence time depend on signal length. In future
work, the extension of this powerful diffusion mechanism to 2-D
signals will be analyzed. An example of LOMO diffusion on a
noisy image (Fig. 6) is given in Fig. 7.

Fig. 6: Noisy 64x64 subimage.

Fig. 7. LOMO-3 diffusion result.



