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ABSTRACT

An analytic signal permits unambiguous characterization
of the phase and envelope of a real signal. But the analytic
signal's phase-derivative i.e. the instantaneous frequency
(IF) is typically a wild function and can take on values rang-
ing fron negative in�nity to positive in�nity. Fortunately,
any analytic signal can be decomposed into a minimum
phase (MinP) signal component and an all-phase (AllP)
signal component. While the MinP signal's log-envelope
and its phase form a Hilbert transform pair, the AllP sig-
nal has a positive de�nite instantaneous frequency (PIF)
unlike that of the original analytic signal. We propose an
elegant computational algorithm that separates the MinP
and AllP components of the analytic signal. The envelope
of the MinP component corresponds to the AM and the PIF
of the AllP component corresponds to the positive FM.

1. INTRODUCTION

The fundamental issues related to analytic signals were
addressed by Gabor in 1946 [1], followed by Ville and others
[2{4]. A signal is said to be analytic if its Fourier transform
vanishes for either positive or negative frequencies. Such a
representation permits an unambiguous characterization of
a signal by its envelope and phase/frequency modulations.
The phase-derivative (or IF) of an analytic signal has been
extensively studied [2, 5]. A comprehensive review of IF
of monocomponent signals (de�ned by Cohen [2]) has been
provided by Boashash [5], along with discussions on exist-
ing algorithms and applications. The general impression
among researchers has been that IF is meaningful only for
narrowband or monocomponent signals [2]. In 1966, Voel-
cker studied the IF of analytic signals in the context of uni-
fying various modulation methods. His studies were based
on a non-linear representation of signals as product of ele-
mentary signals rather than sum of sinusoidal signals as in
traditional Fourier analysis[6]. For a periodic bandlimited
signal, the product-expansion simply means representing
the signal by factoring the periodic signal's Fourier series.
Non-periodic band-limited signals can be similarly treated
as products of elementary signals (Cauchy-Hadamard prod-
uct) but require di�cult mathematics associated with the
so-called entire functions [6]. However even when signals
are not periodic and non-stationary, in many practical ap-
plications it is reasonable to work with a short segment of
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the signal and consider periodic extensions of it, as is com-
mon in short-time spectral analysis. In this paper we model
a T second segment of a signal by a product representation
model and decompose it into minimum-phase (MinP) and
an all-phase (AllP) component. The MinP signal's enve-
lope gives the AM component and the AllP signal is a pure
phase signal whose IF or the FM is positive. An algorithm
for such a decomposition is outlined in section 5. Recently,
Poletti [7] has also modeled signals as products of elemen-
tary signals �a la Voelcker. But our algorithm for separation
of MinP and AllP components is believed to be novel.

2. PRODUCT REPRESENTATION OF

SIGNALS

Let s(t) be a periodic signal, with period T , consisting
of M + 1 complex sinewaves. Let 
 = 2�=T denote its
fundamental angular frequency. Then

s(t) =

MX
k=0

ake
jk
t ; (1)

where ak's are the complex amplitudes of the sinusoids;
a0 6= 0 and aM 6= 0. We may regard s(t) as a polyno-
mial of degree M in the complex variable ej
t. Also, we
may factor this polynomial into its M factors and rewrite
s(t) as

s(t) =

PY
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j
t)| {z }
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j!0t
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1

qi
e�j
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: (2)

p1; p2; ::; pP , and q1; q2; ::; qQ denote the polynomial's roots;

pi = jpije
j�i , qi = jqije

j�i , !0 = Q
 andA0 = a0(
QQ

i=1
�qi).

pis denote roots inside the unit circle in the complex plane,
qis are on or outside the unit circle. The subscript `TMaxP'
indicates that sTMaxP(t) is a maximum phase (MaxP) signal
that has been translated in frequency by !0.

The above expressions, representing a bandlimited pe-
riodic signal may be recognized as the counterpart of �nite
impulse response (FIR) �lters in discrete-time systems the-
ory [8]. More generally, if s(t) consists of an in�nite number

of spectral lines, i.e., S(!) =
Pk=1

k=0
ak�(!�k
), then anal-

ogous to an (in�nite impulse response) IIR �lter's system
function, we can represent s(t) over T secs to desired accu-



racy using su�cient number of poles and zeros as

s(t) = A0
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pis and qis correspond to zeros inside and outside the unit
circle respectively. uis correspond to the signal's poles.

3. ENVELOPE AND PHASE RELATIONSHIPS

An elementary signal [6], e(t), is de�ned as

e(t) = 1� pej
t ; (4)

where p = jpjej� . If jpj < 1 then e(t) is called a MinP signal
since no other signal with the same envelope has a smaller
phase angle. Observe that je(t)j > 0. Taking the natu-
ral logarithm of both sides and using the series expansion,

ln (1� y) =

1X
k=1

�yk

k
, we get

ln(1� pej
t) =

1X
k=1

�pke�jk
t

k
: (5)

After exponentiating both sides we get the following iden-
tity:

1� pej
t = expf

1X
k=1

�jpjk

k
cos(k
t+ k�) + (6)

j

1X
k=1

�jpjk

k
sin(k
t+ k�)g :

From the above expression we note that for an elementary
MinP signal, e(t), the logarithm of its envelope and its phase
angle are related through the Hilbert transform. Similarly,
for an elementary MaxP signal (1� qej
t, where q = jqjej�

and jqj > 1) we get the identity

1� qej
t = �qej
t expf

1X
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�j1=qjk

k
cos(k
t+ k�)(7)

�j
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k
sin(k
t+ k�)g :

The key di�erence between Eq.(8) and Eq.(7) is a sign
change in their phase functions.

Using the above identities in Eq. 2 we have

sMinP(t) = e�(t)+j�̂(t) and (8)

sTMaxP(t) = A0e
�(t)+j(!0t��̂(t)) ; where (9)

�(t) =
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k

k
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k
cos(k
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Thus s(t) can be compactly represented as

s(t) = Ace
j!cte�(t)+j�̂(t)e�(t)�j�̂(t) ; (12)

where Ac corresponds to the overall amplitude of the sig-
nal and !c denotes its `carrier' frequency. !c is equal to
!0 = Q
 plus any arbitrary frequency translation that the
signal s(t) may have been subjected to. The log-envelope,

�(t) + �(t) + lnAc and phase, !0t + �̂(t) � �̂(t), of s(t),
based on the above expressions, are clearly not band-limited

functions. It can be shown that js(t)j2 and d6 s(t)

dt
js(t)j2 are

band-limited. The IF of s(t) is the derivative of the phase of

s(t) and is simply !c+ _̂�(t)�
_̂
�(t), (where the dot stands for

the �rst derivative) i.e. it consists of a d.c (corresponding
to carrier frequency) and a sum of IFs of s(t)'s MinP and
MaxP components. Clearly the behavior of the IF depends
on the pole/zero locations of the signal s(t) (for details see
[9]). It is well-known that an analytic signal's IF could very
well be negative. We now de�ne an AllP signal whose IF
is strictly positive and show that an arbitrary signal s(t)
observed over T seconds can be decomposed into a MinP
signal and an AllP signal.

4. PERIODIC SIGNALS WITH POSITIVE

INSTANTANEOUS FREQUENCY

Consider a signal, z(t), which is a ratio of two elementary
signals as follows:

z(t) =
1 � qej
t

1� 1
q�
ej
t

; (13)

'�' denotes complex conjugation, q = jqjej�, and jqj > 1.
Clearly, the above expression resembles the system function
of an all-pass �lter [8]. Simplifying the above expression, we
�nd that jz(t)j is a constant (equal to jqj) for all time and
hence they are called All-Phase (AllP) signals. Plugging
the expressions corresponding to the identities (Eq.7 and
Eq.8) in Eq.(13) and taking the derivative of z(t)'s phase
angle we get

d6 z(t)

dt
= 


 
1 + 2

1X
k=1

j1=qij
k cos(k
t+ k�)

!
: (14)

Since the right side of the expression in Eq. 14 is 
(1 �
j1=qj2)j1 � 1=q�ej
tj�2 and is analogous to a `power spec-
trum' z(t)'s IF is always positive. We may generalize this
result to the case of a signal consisting of a product of ra-
tional signals. If z(t) is of the form

z(t) =
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i=1

1� qie
j
t

1� 1
q�
i
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t
: (15)

then the phase angle contribution due to each of the L terms
in the above equation adds up, and the corresponding IF is

d 6 z(t)

dt
= 


LX
i=1
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k cos(k
t+ k�i)

!
:

(16)



Since each of the L terms in the above summation is posi-
tive, the IF of the entire signal z(t) is positive. These results
are analogous to well known results in discrete time all-pass
systems, where the equivalent of IF is the group delay; our
derivation is slightly di�erent than the one given in Oppen-
heim and Schafer (page 238) [8].

Now consider s(t) given by Eq. 2. It can be alternatively
expressed as

s(t) = a0

PY
i=1

(1� pie
j
t)
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(1�
1

q�i
ej
t)| {z }
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QQ
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t)QQ
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(1� 1

q�
i

ej
t)| {z }
AllP

(17)
Again, this representation is analogous to the unique de-
composition of a linear system into its minimum phase and
all-pass parts. Hence, similar to s(t)'s representation given
by Eq. 12, the signal can be expressed as a product of a
MinP signal and an AllP signal as

s(t) = Ace
�(t)+�(t)+j(�̂(t)+�̂(t))ej(!ct�2�̂(t)) ; (18)

where ej(!ct�2�̂(t)) is an AllP signal. The main point is
that an analytic signal can be characterized by its posi-
tive envelope (in the traditional sense) and by a positive
IF (of its AllP part) rather than by its usual IF (phase-
derivative). Intuitively, this characterization tells us to de-
�ne a signal's IF as the derivative of that part of its phase
which is left over after removing the contribution due to
the signal's log-envelope (speci�cally its Hilbert transform)

from the original phase. Thus, given s(t) = a(t)ej�(t) we
de�ne its positive IF (PIF) as

PIF of s(t) =
d
�
�(t)� clna(t)�

dt
: (19)

In [10], Loughlin and Tracer have addressed splitting of a
signal's phase into two parts using a di�erent approach.
In the following section, we propose a generalized AM-FM
demodulator to compute the PIF of an analytic signal. Re-
markably, the algorithm does not require explicit computa-
tion of either the logarithm or the Hilbert transform. More
details will be given in [11].

5. A GENERAL AM-FM DEMODULATOR

The proposed AM-FM demodulator, shown in Figure
1, consists of two parts. In the �rst part we model the
envelope of the signal s(t) (see Eq.(18)) by minimizing the
energy of e(t), de�ned asZ T

0

je(t)j2dt =

Z T

0

js(t)h(t)j2dt (20)

where h(t) = 1 +
PH

k=1
hke

jk
t is a voltage controlled os-
cillator (VCO) output. The minimization is achieved by
choosing the coe�cients, hks; 
 = 2�=T . One may recog-
nize this signal envelope modeling method as the analog of
the linear prediction (autocorrelation) method well known
in spectral analysis [12]. We call our method Linear Pre-
diction in Spectral Domain or LPSD. Similar to the MinP

Minimize

over hks
R
T

0
je(t)j2dt

VCO

h(t)

s(t) e(t) Measure

Frequency

h(t) = 1 + h1e
j
t + : : : + hHejH
t

FM

AM

Figure 1: Block diagram for the AM-FM demodulator; AM
in Figure corresponds to the traditional envelope of 1=h(t)
(i.e. 1=jh(t)j) while FM denotes the positive Instantaneous
Frequency of s(t)'s All-Phase component.

property of the prediction error �lter used in linear predic-

tion ([12]), it can be shown that minimizing
R T
0
je(t)j2dt will

result in a h(t) that is a MinP signal (having all its zeros
inside the unit-circle). The signi�cance of this property is
that h(t)'s log-envelope and phase are Hilbert transforms.
Because the error minimization is performed to approxi-
mate s(t)'s envelope, if the value of H is chosen su�ciently
large, then h(t) will be given by

h(t) � e�(�(t)+�(t))e�j(�̂(t)+�̂(t)) : (21)

Thus, 1
h(t)

is the desired approximation to sMinP(t). Conse-

quently the error signal e(t) will be

e(t) � Ace
j(!ct�2�̂(t)) ; (22)

and hence is an approximation to the AllP signal; the PIF

can be obtained as _e(t)

je(t)j
or d6 e(t)

dt
.

For example, consider a signal having 8 zeros (shown in
Fig. 2(a)) and a magnitude-spectrum as shown in Fig. 2(b).
The signal is sampled at 16 kHz, has 9 harmonically related
complex sinusoids of frequencies 0 Hz, 200 Hz, upto 1:6 kHz,
with amplitudes 1, 3:37, 3:42, 9:45, 15:76, 5:4, 3:72, and 1:5
respectively, and whose respective phases (in radians) are
0, �0:3, �1:3, �3:1, 2:8, 2:7, �1:3, �0:9, and �0:6. The
signal's duration is 10 msecs (corresponding to two peri-
ods of 160 samples). We compute this signal's PIF using
LPSD with model order H = 15. Observe that while the
signal's IF (Fig. 2(c)) is negative at times, the PIF (solid
line in Fig. 2(d)) is always positive; dashed-dotted line in
Fig. 2(d) corresponds to the true PIF. Although the ex-
ample considered was of a periodic signal, in general the
log-envelope and PIF can be estimated by applying LPSD
over successive windowed portions of any given signal.

6. CONCLUSION

We showed that an analytic signal viewed through a
window of T seconds can be uniquely decomposed into its
MinP and AllP components; it can thus be represented by
its (MinP's) positive envelope and by its (AllP's) PIF. The
algorithm we proposed for this purpose does not require
explicit computation of either the logarithm or the Hilbert
transform.
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Figure 2: We consider a MixP signal consisting of 8 zeros
(shown in Fig. 2(a)) having a magnitude-spectrum as shown
in Fig. 2(b). The signal's IF (Fig. 2(c)) is negative around
3 msecs and 8 msecs. Its PIF displayed in Fig. 2(d) is
always positive; the PIF estimated using LPSD (solid line in
Fig. 2(d)) and the true PIF (dashed-dotted line in Fig. 2(d))
match closely.


