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ABSTRACT

Motivated by the need for designing e�cient architectures
for two-dimensional discrete wavelet transforms (DWTs),
this paper presents a novel multi-dimensional (MD) fold-
ing transformation technique which can be used to synthe-
size control circuits for pipelined architectures for a speci�c
class of multirate MD digital signal processing (DSP) al-
gorithms. Although a multirate MD DSP algorithm con-
tains decimaters and expanders which change the e�ec-
tive sample rate of a MD discrete time signal, MD fold-
ing time-multiplexes the algorithm to hardware in such a
manner that the resulting synchronous architecture requires
only a single clock signal for the clocking of the datap-
ath. Feasibility constraints are derived for folding a 2-D
data-
ow graph (DFG) onto a given set of hardware func-
tional units according to a speci�ed schedule. Area/power
e�cient architectures are derived for 1-4 level 2-D discrete
wavelet transforms (DWT) with 18:5-23:3% savings in stor-
age area.

1. INTRODUCTION

The folding transformation [1] maps a behavioral descrip-
tion of an algorithm in the form of a data-
ow graph (DFG)
[2] to a set of hardware functional units according to a spec-
i�ed static schedule [1]. The goal of this mapping is to
achieve a solution that optimizes a given objective func-
tion de�ned in a 3-D design space consisting of through-
put, power and area. While folding of a DFG has been
completely formulated for 1-D systems [1], to the best of
our knowledge it remains unsolved for multi-dimensional
(MD) multirate systems. Folding in 1-D systems has re-
sulted in extremely e�cient architectures, see, [1]. An ex-
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Figure 1. (a)A 2-D DFG, (b)DFG nodes mapped to a hardware
unit Hu.
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tension of folding to higher dimensions is needed for de-
sign of e�cient manual/automated design of hardware for
multi-dimensional DSP algorithms, described by a multi-
dimensional data-
ow graph (MDFG), such as algorithms
for image processing. This research was motivated by design
of e�cient architectures for 2-D discrete wavelet transform
which is a multirate algorithm.

2. FOLDING
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Figure 2. (a) A 1-D Folding control structure, (b) A 2-D
Folding control structure.

We consider two paradigms for folding. The �rst one per-
forms a so called 1-D folding. The control structure for this
is shown in Fig. 2(a). Let every input line to the multiplexor
in Fig. 2(a) be fed by the output of the corresponding node
in the folding set shown in Fig. 1(b). This mechanism can
be used for periodic multiplexing of the operations in the
folding set in Fig. 1(b) according to a static periodic sched-
ule given by the position of the DFG nodes in the folding
set. Unfortunately such a control structure is not useful for
folding of two and higher dimensional multirate data-
ow
graphs, see Fig. 1(a) for an example of a 2-D DFG. This
fact can be shown quite easily and will not be discussed
further.

2.1. 1-D to 2-D Folding

2.1.1. Control Structures for Folding

In the control structure shown in Fig. 2(b), the input
lines to the multiplexor which are Nu1 � Nu2 in number
have been divided into Nu1 sets of Nu2 lines each. Due
to the log2(N2)

1 unused lines of the counter driving the
MUX select lines the schedule for input lines connected to
the output does not have a simple periodicity. Here, N2

refers to the number of columns that an input to a node
folded using this control structure will have. 1 The overall

1Restriction of Nu1 , Nu2 , N2 to powers of 2 is not required
but is used for ease of illustration.



periodicity of this structure is Nu1 �Nu2 �N2. Assuming
that the counter starts at count 0, for the �rstNu2�N2 time
units the structure schedules the �rst Nu2 set of input lines
periodically, i.e., it behaves exactly like a control structure
for 1-D folding. From time unit Nu2 �N2 to 2�Nu2 �N2

the next set of Nu2 input lines are periodically scheduled.
Similarly, from (i � 1) � Nu2 � N2 to the i � Nu2 � N2

time unit the ith set of Nu2 input lines is scheduled. Such
a control structure forms a 2-D folding control structure.
The list of inputs to such a 2-D folding control structure
can be arranged in the form of a Nu1 � Nu2 matrix with
successive rows representing successive sets of Nu2 nodes
mapped to the input lines of the multiplexor. This matrix
constitutes a 2-D folding set. The folding order of a node
will be a 2-D vector whose components are the row and
column number of that node in the 2-D folding set. Now
we make a very important claim which the reader can verify
with a little exercise; the (n1; n2)

th iteration of a node with
folding order (u1; u2) will be executed at time-unit tn1;n2
given by:

tn1;n2 = Nu1Nu2N2n1 +Nu2N2u1 +Nu2n2 + u2: (1)

Assume that a hardware unit to which this node is mapped
has Pu pipelining stages and each stage requires 1 clock
cycle for execution. The output from the MUX drives
either a circulating bu�er or a (SRAM/DRAM) module
which has a READ access time PREAD and a WRITE
access time PWRITE . The result of the (n1; n2)

th itera-
tion of such a node is, therefore, available for use at time

unit Nu1Nu2N2n1 + Nu2N2u1 + Nu2n2 + u2 + P
0

u, where

P
0

u = Pu + PREAD + PWRITE .
It is possible to devise three and higher dimensional fold-

ing control structures by a straightforward extension of
these ideas.

2.1.2. 2-D Folding

The primary objective of folding is to ensure that the
scheduling does not violate any dependencies that the
MDFG might have. Folding of 2-D DFG arcs with diago-
nal decimaters and diagonal expanders are illustrated. The
single rate DFG arc case is just a special case of these two
cases with either decimation or expansion matrix set equal
to the identity matrix. Throughout this section we assume
that a source node of a DFG arc has folding order (u1; u2)
and folding set of dimension Nu1 �Nu2 and a destination
node has folding order (v1; v2) and folding set of dimension
Nv1 � Nv2 . The source node is assumed to be mapped to
hardware unit Hu and the destination node to Hv.

2.1.3. Folding for a Decimating DFG Arc

A Decimating DFG arc is shown in Fig. 3(a). The de�n-
ing relation for such an arc is:

y(n1; n2) = x(M1(n1�d12)�d11;M2(n2�d22)�d21): (2)

For ease of implementability of control structures the folded
delays must be iteration independent. This constraint leads
to Nv1 =M1Nu1 and Nv2 =M2Nu2 . The number of delays
in the folded arc from U to V can be derived to be:

D
D
F = (M1d12 + d11)Nu1Nu2N2 + (v1 � u1)Nu2N2 +

(M2d22 + d21)Nu2 + v2 � u2 � P
0

u: (3)
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Figure 3. A multirate arc of a 2-D DFG with (a) A diagonal
decimater, (b)A diagonal expander.

2.1.4. Folding for an Expanding DFG Arc

The de�ning relation for such an arc, see Fig. 3(b) is:

x(n1; n2) = y(L1(n1 + d11) + d12; L2(n2 + d21) + d22): (4)

Like before for iteration independence of DE
F we require

L1Nv1 = Nu1 and L2Nv2 = Nu2 . The number of delays in
the folded arc can be derived to be:

D
E
F = (L1d11 + d12)Nv1Nv2 (L2N2) + v1Nv2(L2N2)� u1Nu2N2 +

n2(L2Nv2 �Nu2) + (L2d21 + d22)Nv2 + v2 � u2 � P
0

u: (5)

2.2. Retiming for folding

Retiming for folding is the process of retiming a DFG so
that the folded delays in any folded arc is nonnegative. For
1-D case see [1]. For an excellent review of 2-D retiming the
reader is referred to [3] and [4]. Throughout this section we
assume that we are folding an arc from node U to node V
and that node U has a retiming vector (r(u1); r(u2)) and
node V has a retiming vector (r(v1); r(v2)). Once again
the single-rate case is considered as a special case of the
multirate cases.

2.2.1. Arcs with decimaters

The retiming constraint for folding a decimating arc can
be easily derived and is given by:

r(u1)Nu1N2 + r(u2)�M1r(v1)Nu1N2 �M2r(v2) �

�
DD
F

Nu2

�
: (6)

2.2.2. Arcs with expanders

The retiming constraint for folding an expanding arc can
be easily derived and is given by:

L1L2r(u1)Nu1N2 + L2r(u2)� L2r(v1)Nv1N2 � r(v2) �

�
DE
F

Nv2

�
: (7)

2.2.3. Single Rate Arcs

The retiming inequalities for single rate arcs have the
same form as (7) with L1 = L2 = 1 and DE

F = DS
F with

d12 = d22 = 0.

2.3. Retiming for storage reduction

Another objective of retiming is to minimize the storage
requirements for implementing the folded architecture. A
very good approximate linear modeling is made possible by
using an arti�ce developed in the classic paper on retiming
by Leiserson et.al. [5]. This problem can be easily veri�ed to
be a hard ILP problem [6]. We therefore resort to separable
retiming detailed next.



3. SEPARABLE RETIMING FORMULATION

Note �rst that the following pairs of inequalities are suf-
�cient to guarantee feasibility of folding for any DFG arc
A.

(Row)Cur(u1)� cvr(v1) � D
F
A ;

Cu = Nu1Nu2N2; Cv = Nv1Nv2N2;

(Column)Nu2r(u2)�Nv2r(v2) � D
F
D � Cur(u1) + cvr(v1):

The above inequalities are in generic form, if A = S we get
the single-rate arc case, for A = D we get the decimating arc
case and for A = E we get the expanding arc case. Doing
this for every DFG arc we get two sets of equations, namely,
the row constraints and the column constraints. Note that
the row constraints are solved initially to get a value for the
row retiming variables; this �xes the right hand side for the
column constraints which are solved for subsequently to get
a value for the column retiming variables.
Next we discuss the memory modeling strategy for the

problem at hand. The cost of any arc, under row and col-
umn retiming, without fanout is shown in Table 1.
For nodes with fanout, at any instance of time, we would
like to provide storage for only as many live signal instances
as are present in the output arc with the maximum number
of live signal instances. The memory modeling required for
such cases is well known and the reader is referred to [5] for
further details.

4. STORAGE COMPUTATIONS

Life-time analysis [7] is used to compute the minimum
amount of storage required to implement the architecture
obtained as a result of the folding scheme described in this
paper. The technique employed to do this will be presented
next.

4.1. Single Rate Arcs

At any time, R, there are,
DEF
= rU(R), live samples pro-

duced by the node U. The maximum of rU(R) over all val-
ues of R gives us the minimum number of delays required
to fold all arcs out of node U. Any instance, R, can be
expressed in the following way:

R = K1Nu1Nu2N2 +K2Nu2N2

+K3Nu2 +K4 + Pu0

Pu0 = u1Nu2N2 + u2 + P
0

u;

0 � K2 � Nu1 � 1;

0 � K3 � N2 � 1: (8)

A comparison of (8) with the expression for the time when
the (n1; n2)

th iteration of node U is scheduled shows thatK1

gives us the minimum number of rows of output produced
by node U. If K2 > 0, this implies that the row of nodes
consisting of node U is not being scheduled at instant R,
then the total number of rows output by node U actually is
K1 + 1 otherwise, it is K1. In case K2 = 0, implying that
the row of nodes consisting of node U is being scheduled at
time instant R, then the total number of instances of output
produced by node U is K1 Rows + K3 signal instances.
Since 0 � K2 � Nu1 � 1, using the last observation, we can
concisely express the total output from node U, outU as:

outU = N
u
2 (K1 +

�
K2

Nu1

�
) + (1�

�
K2

Nu1

�
)K3: (9)

K1, K2 and K3 can be easily computed. The number of sig-
nal instances consumed by sink node V, conV , can be sim-
ilarly calculated by observing that any instance, R, could
be alternately expressed as:

R = J1Nv1Nv2N2 + J2Nv2N2 + J3Nv2 + J4 + Pv1

0 � J2 � Nv1 � 1;

0 � J3 � N2 � 1; (10)

where Pv1 is the time instant when the �rst iteration of node
V is scheduled. The number of signal instances consumed
by node V can be calculated as before and we get:

conV = N2(J1 +

�
J2

Nv1

�
) + (1�

�
J2

Nv1

�
)J3: (11)

Also, note that Pv1 = DF
S +Pu0 . The number of live signal

instances produced by node U into the given arc is then
given by outU � conV . By maximizing this over an interval
Nu1Nu2N2 (the expression for live signal instances is peri-
odic) we get the exact storage requirements for folding the
given single rate arc. The case of decimating and expanding
arcs can be treated similarly and will not be discussed here.
The total memory required to fold the entire DFG is then
found by maximizing the sum over all nodes of the memory
required to fold that outgoing arc which has a maximum of
live signal samples at any instance.

5. DESIGN EXAMPLES

The design of a folding set will be governed primarily by
the input schedule. The exact binding of operation nodes
to hardware units can take advantage of various power sav-
ing strategies like input correlation and operation locality;
these techniques are vital for power savings in implementa-
tions with heavy resource sharing [8], [9]. Our �rst example
is a 1-level 512 � 512 2-D DWT with 4-tap �lters, whose
folding set is designed by taking the above factors into con-
sideration. In fact the folding set of each multiplier consists
of nodes having a common input. This makes it possible to
eliminate these multiply operations completely at the ex-
pense of shifts and adds and get enormous savings in power
as compared to other implementations. The folding set for
the adders is designed in such a way that node clusters
in the DFG get mapped to physical clusters in the archi-
tecture. This can have a major impact on power savings
in routing and in shared busses [9]. We assume a 2-stage
pipeline for the multipliers and a 1-stage pipeline for the
adders.
The 2-D DFG of a 1-level 2-D DWT along with a low-

power folding set is shown in Fig. 4. The folded architecture
is shown in Fig. 5. It uses two dual port (1 READ and 1
WRITE) 512 word SRAM/DRAM and two dual port 256
word SRAM/DRAM and 35 registers organized variously as
circulating bu�ers. This represents around 23:3% savings in
storage area as compared to the best known implementation
in [10]. We tabulate the comparison of a 4-level 2064�2064
2-D DWT with 4-tap �lters. In our method we could either
use 4 di�erent rate clocks for the four di�erent levels and
hence some extra multipliers and adders or we get a single
clock solution. The comparison in Table 2 suggests that the
multi-clock solution could be preferable in terms of area.
Our new folding approach generates superior architectures
as compared with previously published ones.



Table 1. Modeling of arc cost for computing objective function in row and column retiming.
Arc type dr11 dr21 dr12
S-type r(v1)� r(u1) + d11 r(v2)� r(u2) + d21 -

D-type d11 �M1

�
d11
M1

�
d21 �M2

�
d21
M2

�
r(v1)�

r(u1)
M1

+
�
d11
M1

�
+ d12

E-type r(v1)

L1
� r(u1) +

�
d12
L1

�
+ d11

r(v2)

L2
� r(u2) +

�
d22
L2

�
+ d22 d12 � L1

�
d12
L1

�
Arc type dr22 Cost for Row-retiming Cost for Col-retiming
S-type - dr11N

u
2 dr21

D-type r(v2)�
r(u2)

M2
+
�
d21
M2

�
+ d22 dr12N

v
2 dr22

E-type d22 � L2

�
d22
L2

�
dr11N

u
2 dr21

Table 2. Comparison of various wavelet architectures for 4-
level 2064 � 2064 2-D DWT.

Technique mult. add. storage storage saved
Systolic[10] 16 12 16512 -

RAM based[10] 16 12 16512 -
Distributed[10] 16 12 16512 -
Area E�cient[10] 16 12 16512 -
Ours:(1 clock) 16 12 13452 18.5%
Ours:(4 clocks) 32 24 12680 23.3%
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Figure 4. DFG for the 2-D DWT along with the 2-D folding
set.

6. CONCLUSIONS AND FUTURE WORK

An important new design technique was presented for high
level synthesis of MD multirate DSP systems implemented
with a row-by-row input scan order. An extension of these
techniques to include more complex input scanning orders
and decimating/expanding operators is currently under in-
vestigation.
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