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ABSTRACT

A crucial issue in triphone based continuous speech recogni-
tion is the large number of models to be estimated against
the limited availability of training data. This problem can
be relieved by composing a triphone model from less context-
dependent models. This paper introduces a new statistical
framework, derived from the Bayesian principle, to perform
such a composition. The potential power of this new frame-
work is explored, both algorithmically and experimentally,
by an implementation with hidden Markov modeling tech-
niques. This implementation is applied to the recognition of
the 39-phone set on the TIMIT database. The new model
achieves 74.4% and 75.6% accuracy, respectively, on the
core and complete test sets.

1. INTRODUCTION

Building triphonic models for continuous speech recogni-
tion has not been an easy task due to the data sparsity
problem. Previous studies have attacked this problem by
using model-interpolation [6] and quasi-triphone [7] tech-
niques. In the model-interpolation technique, an under-
trained triphone is re-tuned by interpolating the model with
others of less context-dependency, i.e. the left and right bi-
phone and the mono-phone models, which can be trained
more reliably. This technique can improve the robustness
of the models and the weights, balancing the combination,
have been determined either by hand-tuning [9] or by using
the deleted-interpolation algorithm [6]. The quasi-triphone
model is based on a left-to-right HMM structure and on
an assumption that the contexts mainly a�ect the outer
states of an HMM. Therefore the �rst and last states are
trained to distinguish the left and right contexts, respec-
tively, and the central states can be assumed to be context-
independent. This technique typically reduces the num-
ber of distinct models to be estimated from � O(N3) to
� 2O(N2), where N is the number of phones. In addition,
various context-clustering techniques for sharing training
data from similar context-e�ects have been proposed. In
HMM based systems, parametric tying has been excised
from states [11] to mixture components [4] and to feature
parameters [10]. Context clustering has been combined into
both the model-interpolation and quasi-triphone systems to
improve the models' trainability [6][7].

Building triphones based on model-interpolation involves
heuristics and/or intensive computation in determining the
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interpolation weights. Besides, it can be argued that be-
cause this method separately estimates the component mod-
els and their interpolation weights, it results in typically
sub-optimal models. The quasi-triphone model, on the other
hand, is inaccurate for some short phones such as stops,
a�ricates and some fricatives, which often have time dura-
tions no longer than a single frame of the normal length.
In other words, the left and right context-e�ects are poten-
tially temporally inseparable.

In this paper we introduce a new statistical framework
for constructing triphone models from models of less context-
dependency. This composition reduces the number of dis-
tinct models by higher than an order of magnitude and is
therefore of great signi�cance in triphone-based continuous
speech recognition. The new approach is suggested with a
hope to overcome the above mentioned problems. It is dis-
tinguished from the previous models in that it is built on
the Bayesian principle, rather than on a heuristic method.
The potential power of the new model is demonstrated by
an implementation based on HMM techniques.

2. THEORETICAL FRAMEWORK

Denote by x is a phone-level observation and (a�; a; a+)
a triphone unit, with a being some phone and a� and a+

being its left and right contexts, respectively. The prob-
lem of triphonic acoustic modeling can be expressed as
the estimation of the probability density function (pdf)
p(x j a�; a; a+), of x generated from (a�; a; a+). Using
the Bayesian principle

p(x j a�; a; a+) =
p(a�; a+ j a; x)p(a; x)

p(a�; a+ j a)p(a)
(1)

If we assume that: 1) a� and a+ are independent given a,
i.e. p(a�; a+ j a) = p(a� j a)p(a+ j a), and 2) a� and a+

are independent given a and x, i.e. p(a�; a+ j a; x) = p(a� j
a; x)p(a+ j a; x), (1) becomes

p(x j a�; a; a+) =
p(a� j a; x)p(a+ j x; a)p(x; a)

p(a� j a)p(a+ j a)p(a)
(2)

Therefore, by multiplying both the numerator and denom-
inator of (2) by p(x; a)p(a) it follows that

p(x j a�; a; a+) =
p(x j a�; a)p(x j a; a+)

p(x j a)
(3)

(3) indicates a novel way of obtaining a triphone model by
composing models of less context-dependency, i.e. p(x j



a�; a), p(x j a; a+) and p(x j a), which correspond to the
pdfs of x given the left-context, right-context and context-
independent units, respectively. This composition leads to
a reduction of the number of models to be estimated from
� O(N3) to � 2O(N2). The assumptions made above in
obtaining (3) simply mean that all combinations of the left
and right contexts are permitted in forming the triphones.
Without an appropriate language constraint, this turns out
to be an inherent characteristic of all the approaches pro-
ducing a triphone from the combination of left and right bi-
phones [7]. Because the derivation of (3) is closely related to
Bayesian statistics, we call (3) the Bayesian triphone model.

3. HMM BASED IMPLEMENTATION

3.1. The acoustic model

The Bayesian triphone model has been implemented by
de�ning each of the component models, i.e. p(x j a�; a),
p(x j a; a+) and p(x j a) in (3), as an HMM. Let x =
(x1; : : : ; xT ) denote a phone-level observation sequence and
�, + and � di�erentiate the left-context, right-context and
context-independent models, respectively. The likelihood
function associated with the Bayesian triphone model can
be written as

p(x j �) =
p(x j ��)p(x j �+)

p(x j ��)
(4)

where � = (��; �+; ��) is the triphone model parameter
set and each p(x j �c), c = �; + and �, is de�ned by

p(x j �c) =
X
s

�cs0

TY
t=1

acst�1st
bcst(xt) (5)

(5) is the standard HMM representation where �c is the
model parameter set and s = (s0; : : : ; sT ) is the state se-
quence. (4) can be simpli�ed by tying the state sequences
among the left-context, right-context and context-
independent models. The tying of the state-sequences is
de�ned as (��;A�) = (�+;A+) = (��;A�) = (�; A), and
p(s j x; ��) = p(s j x; �+) = p(s j x; ��) = p(s j x; f�; Ag),
where � and A are the tied initial-state and state-transition
probabilities, respectively. In other words, we assume that
the state sequence of a given signal is dependent only on
the nature of the signal; di�erent models accounting for the
same observation signal generate identical state-sequences.
Substitute (5) into (4) and apply the tying of the state-
sequences as de�ned above, it can be shown that (4) can be
reduced to

p(x j �) =
X
s

�s0

TY
t=1

ast�1st

b�st(xt)b
+
st(xt)

b�st(xt)
(6)

(6) is the triphone model which we implemented for phone
recognition.

Speci�cally, assume that each bci (x) (c = �; + and �)
in (6) is a mixture Gaussian density of a form

bci (x) =
X
n

wc
inb

c
in(x) (7)

where bcin(x) is the nth Gaussian component in state i and
wc
in the corresponding weight. Substitute (7) into (6), note

that 1=
P

n
w�stnb

�
stn(xt) =

P
n
w�stnb

�
stn(xt)=b

�
st(xt)

2 and

that
QT

t=1

P
n
wc
stnb

c
stn(xt) =

P
n1:::nT

QT

t=1
wc
stntb

c
stnt(xt),

we therefore can write p(x j �) as

p(x j �) =
X
s

X
N

X
M

X
K

p(x; s;N ;M;K j �) (8)

where p(x; s;N ;M;K j �) is de�ned as

p(x; s;N ;M;K j �) = �s0

TY
t=1

ast�1st

�w�stntb
�
stnt(xt)w

+
stmt

b+stmt
(xt)

w�stkt b
�
stkt

(xt)

b�st(xt)2
(9)

and N ,M and K represent the T -tuples (n1; : : : ; nT ), (m1;
: : : ;mT ) and (k1; : : : ; kT ), respectively, whose summations
are over all possible (n1; : : : ; nT )s, (m1; : : : ;mT )s and (k1;
: : : ; kT )s, respectively.

3.2. The forward-backward re-estimation algorithm

Following the usual practice, a maximum-likelihood esti-
mate of �, based on the likelihood function p(x j �) de�ned
in (8), can be achieved by an iterative maximization of a
Baum's auxiliary function

Q(�; �̂) =
X

s;N ;M;K

p(x; s;N ;M;K j �) ln p(x; s;N ;M;K j �̂)

(10)

with respect to �̂ for a given previous estimate �. Maximiz-
ing Q(�; �̂) against parameters of the left and right context
components is straightforward, resulting in the respective
re-estimation formula. For example, a new estimate of the
mean vector of b�in, occurring as a critical point of Q(�; �̂),
is given by

m̂�
in =

PT

t=1
��in(t) � xtPT

t=1
��in(t)

(11)

where ��in(t) is short for the probability p(x; st = i; nt = n j
�), calculated by

��in(t) =
X
j

�t�1(j)aji
w�inb

�
in(xt)b

+

i (xt)

b�i (xt)
�t(i) (12)

where �t(i) and �t(i) are the forward and backward prob-
abilities, respectively, computed with the following recur-
sions

�t(j) =
X
i

�t�1(i)aij �
b�j (xt)b

+

j (xt)

b�j (xt)
(13)

and

�t(i) =
X
j

�t+1(j)aij
b�j (xt+1)b

+

j (xt+1)

b�j (xt+1)
(14)

(11)-(12) apply to b+im by interchanging the indexes between
n and m and � and +.

The re-estimation formula for the context-independent
component is obtained by maximizing (10) against fb̂�ikg.



Speci�cally, the partial derivative of Q(�; �̂) against the

mean vector of b̂�ik can be shown as

@Q(�; �̂)

@m̂�
ik

=

TX
t=1

�
��ik(t)� 2�i(t)

ŵ�ikb̂
�
ik(xt)

b̂�i (xt)

�
1

b̂�ik(xt)

@b̂�ik(xt)

@m̂�
ik

(15)
where ��ik(t) and �i(t) are short for the probabilities p(x; st =
i; kt = k j �) and p(x; st = i j �), respectively, and they are
calculated by

��ik(t) =
X
j

�t�1(j)aji
b�i (xt)b

+

i (xt)w
�
ikb

�
ik(xt)

b�i (xt)
2

�t(i) (16)

and

�i(t) =
X
j

�t�1(j)aji
b�i (xt)b

+

i (xt)

b�i (xt)
�t(i) (17)

An approximation to Equation (15) can be made by rep-

resenting ŵ�ikb̂
�
ik(xt)=b̂

�
i (xt) within the bracket in terms of

the previous estimates. As such, note from (16) and (17)
that �i(t)w

�
ikb
�
ik(xt)=b

�
i (xt) = ��ik(t), we therefore can write

(15) as

@Q(�; �̂)

@m̂�
ik

= �

TX
t=1

��ik(t)

b̂�ik(xt)

@b̂�ik(xt)

@m̂�
ik

(18)

(18), as being set to zero and solved for m̂�
ik, resulting in

the re-estimation equation

m̂�
ik =

PT

t=1
��ik(t) � xtPT

t=1
��ik(t)

(19)

In a similar way, we can obtain the re-estimation formula
for the mixture weights and covariance matrices.

As can be seen, the above algorithm constructs the
three component models and their composition in one step,
subject to a common optimality criterion. This consti-
tutes a distinguishing characteristic for the new model, as
compared with the model-interpolation based approaches.
Speci�cally, this characteristic makes the new model com-
putationally e�cient and, presumably, globally optimal.

3.3. Parametric tying with the new model

The problem of tying parameters within the new model is
raised to improve the trainability of the model's biphone
components. In particular, two strategies of state-level ty-
ing have been studied as a complement to the above training
algorithms. Firstly, a tied-mixture structure [4] is intro-
duced to the corresponding states of all the three compo-
nent models accounting for the triphones of a phone. In
such a model, state codebooks containing mixture densi-
ties are shared across the component models, while each
component model has a distinct mixture weight distribu-
tion, which is speci�c to the respective context phone and
the context independency. The re-estimation algorithm de-
scribed above can be easily modi�ed to accommodate this
model. Speci�cally, a new estimate of the weight in each
component model can be shown as

ŵc
in =

PT

t=1
�cinP

n0

PT

t=1
�c
in0

c = �; +; � (20)

where �cins are de�ned in (12) and (16) respectively, with
each bcin(x) = bin(x), and a new estimate of the mean vector
of bin(x) is given by

m̂in =

PT

t=1

�
��in(t) + �+in(t)� ��in(t)

�
� xtPT

t=1

�
��in(t) + �+in(t)� ��in(t)

� (21)

Next, merging the context-speci�c weight distributions
within the left and right biphones of a phone is introduced
to the above tied-mixture model. This merging spans the
same states of the models and accounts for those biphone
weights trained with too few occurrences. The merging is
based on the increase in the weighted-by-counts entropy [6].
To retain the context resolution, a threshold, indicating the
minimum number of training samples needed to estimate
a weight distribution, is introduced to stop the merging.
Merging the weight distributions is performed following an
iterative sorting-merging method. At each step of the iter-
ation, the least frequent weight-distribution is merged up-
wards into another distribution chosen to minimize the en-
tropy increase A new weight-distribution is then formed by
combining the counts of occurrences of the merged distribu-
tions. The new distribution set is sorted again by frequency
for the next step of merging. This sorting-merging process
is repeated until the frequency of the least frequent distri-
bution reaches the pre-de�ned threshold. An advantage of
this sorting-merging method is that the weight-distributions
will not be merged if they each have already satis�ed the
threshold, therefore retaining reasonable model resolution.

4. EXPERIMENTS

Experiments are performed with the TIMIT database (1990
release, [3]). Following convention, we recognize the stan-
dard 39-phone set. The database is subdivided into training
and test sets based on the recommendations by NIST. Both
the core and complete test sets are used in the experiments.

The Bayesian triphone model with tied-mixture states
is implemented, with the merging of the context-speci�c
mixture-component weights as an option. A simple HMM
structure, with 3 states and a left-to-right topology, is used
throughout the modeling. The codebook size for each tied
state is chosen to be 16, each codeword being a Gaussian
density with a diagonal covariance matrix. The speech sig-
nal is divided into frames, each with a length of 20 ms and
adjacent frames overlapped by 10 ms. Ten Mel-frequency
cepstral coe�cients (MFCCs) and one normalized logarith-
mic energy, along with their �rst and second order di�er-
ential versions de�ned over a window of �20 ms, are calcu-
lated as the observation vector for each frame. The models
are initialized by �rst training a context-independent HMM
for each phone. Afterwards, each required left and right
context model is initialized by cloning the corresponding
context-independent model. These serve as the initial com-
ponent models for composing the Bayesian triphone models.
Then, for each training sentence, the embedded training of
the Bayesian triphone models is performed using the al-
gorithm described in Section 3. Three embedded training
iterations are run in each experiment. A bigram phone lan-
guage model is estimated on the training set and is applied
to the recognition experiments.



Table I and Table II show the recognition results of the
new triphone model on the core and complete test sets, re-
spectively. These results are produced by the models with
and without merging the context-speci�c mixture weights.
For merging the mixture weights, two thresholds, 50 and
100, are used, respectively, each setting a bottom number
of training samples required to estimate a mixture-weight
distribution. Since the TIMIT training set contains a signif-
icant number of both left and right biphones with very low
frequency of occurrences, many weight distributions will be
under-trained. This lack of robustness can be improved by
an appropriate merging of the similar weight distributions,
leading to an improvement in the recognition performance.
This is seen in both Table I and Table II.

The comparison between our results and some of the
best results reported previously by other researchers is sum-
marized in Table III. The comparison is made on the same
test set whenever the corresponding results are available,
and for comparison, the results produced by the context-
independent HMMs (mono-phones) are also included. To
the authors' knowledge, the accuracies of 74.4% and 75.6%,
obtained by the new model on the core and complete test
sets respectively, are higher than those so far reported in
the literature.

5. CONCLUSIONS

This paper introduced a new statistical framework for con-
structing triphonic models from models of less context-
dependency. This composition reduces the number of mod-
els to be estimated by higher than an order of magnitude
and is therefore of great signi�cance in relieving the dtat
sparsity problem in triphone-based continuous speech recog-
nition. The potential power of the new framework has been
explored by an implementation with the HMM technique.
It is shown that the new model structure leads to e�cient
model estimation and optimization. Phone recognition ex-
periments on the TIMIT database have shown improved
accuracy over that obtained by other systems.
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Table I. Phone recognition performance (%) of the new
triphone model on the core test set

Merging
threshold Corr. Acc. Sub. Del. Ins.
No merging 76.8 72.9 17.3 5.9 3.9

50 77.7 74.0 16.3 6.0 3.7
100 77.8 74.4 16.0 6.2 3.4

Table II. Phone recognition performance (%) of the new
triphone model on the complete test set

Merging
threshold Corr. Acc. Sub. Del. Ins.
No merging 78.6 74.9 15.5 5.9 3.7

50 79.0 75.6 15.1 5.9 3.4
100 79.0 75.6 15.0 6.0 3.4

Table III. Comparison of phone accuracy (%) between the
new model and some previous models

New model Some previous models
Accuracy Model Accuracy

Quasi-triphone [1] 70.4
Gender-speci�c [5] 71.1y, 73.4z

74.4y, 75.6z State clustering [11] 72.3
Polynominal state [2] 73.5y

Recurrent neural net [8] 73.9y, 75.0z

Mono-phone 64.9y, 66.0z

y Core test set result.
z Complete test set result.


