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ABSTRACT

The design of perfect reconstruction FIR multifilters is dis-
cussed in this paper. Schur algorithm is applied to factor-
ize the polyphase matrix of multifilters into lattice blocks.
The multifilters are characterized by the chain parameters
in each lattice block. The complete parameterization of
paraunitary multifilters and a class of biorthogonal multi-
filters are derived. The parameterizations are minimial and
result in simple design methods using unconstrainted opti-
mization.

1. INTRODUCTION

Multifilters are vector valued filter bank. The subband fil-
ters of the multifilters are N x N dimensional matrix fil-
ters that accept N dimensional vector valued input signal
x(n) = [ zo(n) zn-1(n) ]T The bank of multi-
filters has the same structure as ordinary filter bank, with
the extra freedom that comes with matrix coefficients. This
added freedom also creates design difficulties. The major
difference between multifilters and traditional filter bank is
the non-commutative matrix multiplication.

Multifilters are used for multivalued signal processing,
such as color image processing, transform domain vector
quantization, etc. It is also used to implement traditional
filter bank for parallel computation [10]. Furthermore, mult-
filters can be used for fast implementation of multiwavelets
[6, 10]. The design of multifilters is still at an early stage of
development. Johnson [11] derived the lattice structure for
paraunitary 2 band 2 channel multifilters. In the author’s
pervious work [12], a design method for M band N chan-
nel paraunitary multifilters based on modulated structure
was derived. In this paper, a complete parameterization of
multifilters is derived.

The subband filters of M band N channel multifilters

are matrix valued filters,

Hi(z)=Hio+Hi127" 4+ + Hi 2", (1)
Fi(z)=Fio+Finz" +  +Fimz™, (2)

where H; ;,F;; € RNxN, m and m are the degree of the
matrix filters. The matrix valued coefficients do not affect
the basic properties of z-transform and the noble identities
can be extended naturally to matrix filter. The polyphase
components of the analysis filters H;(z) and synthesis filters

F;(z) are defined as

M—1 M—1
Hi(z) = Z Eir(z"):27" Fi(2) = Z R (")~ (M7 7R),
k=0 k=0

The polyphase representation of multifilters in block matrix
format is

Eo(2) Eon—1(z) 7

O ; L@
En—1,0(2) En—1,m-1(2) |
Roo(2) Rar—1,0(2)

Ro=| ¢ . ; -
Ro,m—1(2) Rar—1,m-1(2)

The multifilters can be characterized by parametering the
matrix polynomial of the polyphase matrix. An iterative
Schur algorithm used for the reduction of the orders of poly-
nomials [7] was extended to the matrix polynomials. It is
applied to parameterize the polyphase matrix.

2. 2 BAND N CHANNEL BLOCK FIR
LOSSLESS SYSTEM

Suppose Eq(z) and E;(z) form a lossless system
_ | Eo(z)
Pp(z) = [ E:(2) (5)

Lossless implies the power complementary property

Poeot) = [Bo) B ]| B | )
ol EO(Z)EO(Z)—l—El(Z)El(Z), (7)

where I is the identity matrix and ¢ # 0. If E;(z) have the
form of eq.(1), then Pp(z) is causal and FIR. Our aim is
to factorize Pp(z) similar to that discussed in [5, Chapter
14.3.2].

Schur algorithm suggested the lattice structure in Fig-
ure la. The transfer function is given by

Eo, (2) = ©oomHo,_,(2)+O01mz" Hi,_,(2)(8)
Ei () = OuomHo, ,(2)+Onmz" Hi,_,(2)(9)

where the subscript k in E;, (z) represent the degree of the
matrix filter is k.



2.1. Degree Reduction

The degree reduction requirement is satisfied by choosing

Oooom = Oum=1I (10)
_Ggl,m = ®10,m = Kg (11)
Kn = Hi,oH;, (12)

where K, is the chain parameter. The structure in Figure
la implies Py, can be written as

Pon(2) = Omdiag(Tar, 27 Tar) Prei(2) (13)

®00,m ®01,m
®10,m ®11,m
system P,,_1(2) is lossless bound real (LBR) if and only
if ©,,0,, = I and P,.(z) is LBR [5]. Thus a complete
characterization of paraunitary system adds the following
set of equations

. The reduced order FIR

where ©,, =

éoo,m@oo,m + élo,m@lo,m =1 (14)
éll,m@u,m + (:)01,m@01,m = 1 (15)
OO0 + 01507 = 0 (16)

Using Cholesky factorizations, the lattice coefficients are
modified as follows, so that FIR LBR constraint is satisfied;

Ooom = [I+K,Kn] = (17)
Oo1m = K [I+KnK] = (18)
Owm = K [I+K, K] = (19)
Oum = [I+KnKp] = (20)

2.2. Complete Factorization of Pp(z)

Since the signal flow directions are consistant with the block
description, causality is satisfied.

Theorem 1 Pp(z) is a 2 band N channel block FIR loss-
less system with degree D, if and only if it can be factorized
as
(C]
Pp(z) = COpA(2)Op—i---O1A(2) [ 9(1“1*2 ] (21)

where C € Ryxn is diagonal and invertible, ©; € Rarwar
is orthogonal and the matriz coefficients are given by eq.(17-
20), Ogo,0 and O11,0 have the form of eq.(17) and eq.(20)
respectively, and A(z) = diag(In, 2" Iy).

2.3. Minimality

Since Pp(z) can be implemented as eq.(21) which has Dx N
delays, we have

detPp(z) < D x N (22)

From eq.(21), we also have deg detPp(z) = D x N. But we
know that degPp(z) > deg detPp(z) [5], so that

degPp(z) > D x N (23)

From the above two inequalities we conclude degPp(z) =
D x N. This proves that the structure is minimial.

2.4. Multifilters Implementation

Based on Theorem 1, a complete parameterization of the
polyphase matrix of 2 band N channel FIR paraunitary
multifilters i1s given by Figure 1b

E(z) =COpA(2)Op_1---O1A(2)0¢ (24)
where ©g = [ 800’0 801’0 :|, is orthogonal.
10,0 11,0

3. M BAND N CHANNEL BLOCK FIR
LOSSLESS SYSTEMS

Suppose Eq(2),..., Ex—_1(2) form a lossless System

Eo (Z)
PoGsi=| (25)
EM_1 (Z)
If E;(z) are given by eq.(1), Px(z) is causal and FIR. Our
aim is to find a structure for P (z), similar to [5, Chapter
14.4]. Apply the Schur algorithm, the structure in Figure

2a is considered. The transfer function of the lattice block
is given by

Pin(2) = Opdiag(Inu-1), 2 In)Pm_i1(2) (26)

3.1. Degree Reduction

The paraunitary matrix P,,(z) can be written as
Pm(z) = Pm,O +-- 4 Pm,mz_m (27)

where P, ; € Rusnvx v and the degree m condition is equiv-
alent to Py, 5, # 0. The paraunitary condition imples that
[5, Chapter 14.2]

PrmPmo =0 (28)

; ;

Consider Py,_1(2)

Pro1(2) = (1= ViV + 2V V) Pra(2)  (29)

V..(2)

Choose Vi, = Py /||Pm,m||, thus the noncausal term in
eq.(29) becomes
Vi VmPmo = 0 (30)

Furthermore the coefficients of 27 in Py—1 (z) is given by

(I - Vm{;m) Pm,m = ||Pm,m|| (I - Vm{’m) Vm
= [Prmll(vin —vm) =0 (31)

where we assume V., vy, = 1. So Py,_1(2) is causal and
FIR with degree < m. Moreover

Pp(2) = Vin(2)Pri (2) (32)

Since deg(Vm(z)) = 1, hence Py,,—1(2) cannot have degree
smaller than m —1. Thus the degree of P, (z) is precisely
m—1. A similar prove as Section 2.3 will show the following
parameterization of V(z) is minimal.



3.2. Size Reduction

Follow the construction of V(z) in [4],
V(z) = diag(In(M — 1), 27 ' Ix)U (33)

where U € Ryarxnar and UTU = 1. Since U is parauni-
tary, it can be written as

S 0
e ”

where S € RN(M_l)XN(M_l) and STS = I, u = I, and
© = On-2On(m—3) - Oo where O,, has the form in
Figure 2 and K, has the same form as that in the factor-
ization of 2 band N channel paraunitary multifilters. Thus,
0T0,, =1, and ®TO =1

The paraunitary matrix U € Ryu v has been re-
duced in size to S € RN(M—l)xN(M—1)~ The complete fac-
torization of U is obtained by repeated size reduction. Fig-
ure 2b shows the details of the building block.

3.3. Complete Factorization of Pp(z)
The M band N channel FIR lossless system can be factor-

ized by repeated degree reductions. The resulting system
is causal because the signal flow directions are consistant
with the block description.

Theorem 2 Let Pp(z) be a M band N channel block FIR

lossless system with degree D. Then it can be factorized as

Py(2) = Vo(:)Vpi(2): Vi(:)Us [ T 0 0]",
(35)
where V;(z) has the form given by eq.(33) and Ug € Rymxn
satisfies UT Uy =1 thus can be implemented by the size re-

duction technique in Section 3.2.

3.4. Multifilters Implementation

Base on Theorem 2, a complete parameterization of the
polyphase matrix of M band N channel paraunitary FIR
multifilters is given by Figure 2c

E(z) =Vp(2)Vp_1(2)--- Vi(2)Ug (36)

4. 2 BAND N CHANNEL BLOCK FIR
BIORTHOGONAL SYSTEM

Suppose Eq(z), E1(2), Go(z) and G1(z) form a biorthogo-

nal system

Po(z) = ETE?%] (37)
Rp(z) = [ Gol(s) Gi(z) ], (38)
Rp(:)Pp(z) = [ Gol(x) Gi(2) ] [ gfgzg ],(39)
T = Go(2)Eo(2) + Gi(2)Ei(2).  (40)

Our aim is to find a structure for Pp(z) and Rp(z) similar
to [5, Chapter 7.2]. Using Schur algorithm, consider the
structure in Figure 3a. Let Eo, _, (2) and E;1,,_, (2) be

EOm—l(Z) =Eo,,_;0+ EOm—lylz_l +- 4+ EOm—lym—lz_m-H (41)
Elm—l(’z) =Ei,_ 0+ Elm—lylz_l +- 4+ Elm—lym—lz_m-l-l (42)

where E;_, ; € R.n«x and the degree m — 1 condition is

equivalent to E;  _, m—1 # 0. The transfer functions are
Eo,,(2) = Eo,_,(2) + KBy, _, 27" (43)
Ei, (2) = KnEo, () +Ei, 27" (44)

Thus the degree of Eq,,(z) and E;, (z) equal to m. If
Ei,_,(z2)=2"""Ey__, (27" then E1,,(2) = 27" Eo,, (z71).

4.1. Complete Factorization of Pp(z) and Rp(z)

Since the signal flow directions are consistant with the block
description, causality is satisfied.

Eo(z)
Ei(z)
nel block FIR system with degree D such that E,(z) =
z_DEo(z). Then it can be factorized as

Theorem 3 Let Pp(z) = [ ] be a 2 band N chan-

PD(Z):TDA(Z)TD_1~~~T1APO (45)
I K;
where T; = [ K. I :|, and Py € Ronyn.

Rp(z) is chosen to be the inverse matrix of Pp.

Rp(z)=Py', (2)81---Sp_1, (2)Sp (46)
where S; = [ _i{‘ _i{i :|, and , (2) = diag(z™ Iy, In).

4.2. Implementation

The analysis filters shown in Figure 3b is given by
Ho(z) = SEo, (°) + 2 'SE1,(2°) (47)
Hi(z) =SEo,(z°) — 27 'SEi, (2°) (48)

where S is the permutation matrix with 41 as element.
Each row of the Ho(z) and H;(z) is symmetry and anti-
symmetry around z~ 7. Thus the multifilters is linearphase.

5. M BAND N CHANNEL BLOCK FIR
BIORTHOGONAL SYSTEM

Suppose Eq(z),...,Ex—1(2) and Go, -+, Guy—1 form an
invertible system

Eo(z)
Po(z) = -, (49)
En—1(2)
Rp(z) = [ Go(z) Gu-1(z) |, (50)
Rp(2)Pp(z) = el B (51)



5.1. Size Reduction

Construct V(z) as
V(z) = diag(In(M — 1,27 ' I5)U (52)

where U € Ryarxnar is invertible. Let G be the group of
invertible matrices satisfy

u 0
YT €¢G TZT[O S:| (53)
where T € RkaNk, S € Gand S ¢ RN(k—l)xN(k—1)7
p = xI and T = Ty_2)Tn@w—s) - To where T,, =
I K,
K, I
in Section 3.2, any matrix U € G can be reduced in size by
eq.(53) to S € G. A complete parameterization of U can
be obtained by repeated size reduction. Figure 4 shows the
details of the building block for this class of biorthogonal
multifilters. The inverse of U is given by

:| as shown in Figure 4. Following the results

Ul = [ 5 sgl ]T_l, (54)
T o= TO_1 ’ "TXfl(M—s)TXfl(M—z)v
T = [ _II<m _If’" ] ) (55)

5.2. Synthesis of Pp(z)

Similar to the orthogonal M band N channel FIR lossless
system, an M band N channel FIR biorthogonal system
with degree D can be synthesized by Theorem 4.

Theorem 4 Any degree D M band N channel block FIR
biorthogonal system Pp(z) can be synthesized by

Po(z) = Vo (2)Vooi(z)-- - Vi(z)Po [ I 0 - 0 ]"
(56)
where V(z) has the form as eq.(52) and Py € G.

5.3. Implementation

Base on Theorem 4, a complete parameterization of the
polyphase matrix of M band N channel biorthogonal FIR
multifilters is given by Figure 2c.

E(z)=Vp(2)Vp_i1(z)---Vi(2)Pg (57)

6. DISCUSSIONS AND CONCLUSIONS

A complete parameterization of paraunitary multifilters by
block lattice structure is derived from an iterative Schur
algorithm. The design of multifilters can be formulated as
unconstrained optimization problems of the appropriate lat-
tice (chain) parameters and objective functions. Similarly, a
class of biorthogonal multifilters are parametrized by block
lattice structure derived from an iterative Schur algorithm.
The lattice structure for 2 band N channel multifilters com-
pletely parametrize the class of multifilters that have linear

phase subband filters. A class of M band N channel mul-
tifilters are parameterized by cascade of the lattice block
in 2 band N channel case. The presented design methods
have been implemented in Matlab and Matlab optimization
toolbox. The convergence rate of the algorithm is fast, and
high performance multifilters are obtained. However, de-
sign example is not presented due to limited space. Furture
research should be directed to the structure of linear phase
paraunitary multifilters and nonlinear phase biorthogonal
multifilters.
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