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ABSTRACT 1. PARSIMONIOUS SIDE PROPAGATION
A fast parsimonious linear-programming-based algorithm for The Parsimonious Side Propagation algorithm trains a neural net-
training neural networks is proposed that suppresses redun-  work with a minimal number of hidden units, each urtitizing a
dant features while using a minimal number of hidden units. minimal number of problem features, to classifyradimensional

This is achieved by propagating sideways to newly added hid-  input vector as belonging to either of two finite point sdtsr B
den units the task of separating successive groups of unclassi- in R". Them training points ofA are represented by the matrix
fied points. Computational results show an improvement of A € R™*™ and thek training points of3 are represented by the
26.53% and 19.76% in tenfold cross-validation test correct- matrix B € RF*"™. We initially consider the setl U B “unclas-
ness over a parsimonious perceptron on two publicly available  sified”. In the notation of our algorithm, we set' := .4 and
datasets. B! :=B.

We consider the problem of determining the weights and thresh- I training the hidden units, we begin with the entire train-
olds of a neural network to discriminate between the elementsing dataA U B and compute a plangr|w”s = v} utilizing a
of two disjoint sets4 and B in n-dimensional real spaci”. minimum number of the: problem features (i.e. setting as many
We present a parsimonious, linear-programming-based approactglements ofv € R™ to zero), while attempting to separadefrom
to determine a minimal number of hidden units and weight vectors B to the extent possible. The valueswfandy € R defining
with a minimal number of nonzero components so that the neuralthis separating plane are obtained by solving the following opti-
network achieves a prescribed degree of accuracy on the trainingmization problem by a linear-programming-based Successive Lin-
data. Using tenfold cross-validation we compare neural networks €arization Algorithm [2, Algorithm 3.1]:
trained by this method with a parsimonious perceptron (i.e. trained
with a minimal number of nonzero weights) to discriminate be-

T T
tween points ind andB. (w,7,y,%,v) € arg min(l—)\)(u—|—z)+)\(n—eT5_av),
A word about our notation. All vectors will be column vectors T m k
unless transposed to a row vector by a supersgtipThe scalar —Aw+ey+e<y,
product of two vectors andy in R™ will be denoted by:y. The T.={( ) Bw—ey+e <z,
notationA € R™*™ will represent ann x n real matrix A, A; B AARAL St y>0,z2>0,
will denote thesth row of A and A;; will denote the element in —v<w<w
row ¢ and columry. A vector of ones of arbitrary dimension will 1)
be denoted by. The base of the natural logarithm will be denoted
by e, and fory € R™, ¢~¥ will denote a vector iR with com- The number of features utilized by the separating plane (i.e.
ponentss™¥*, ¢ = 1,...,m. The notationarg Imneirsl S() wil the number of nonzero elementswfis determined by the feature

denote the set of minimizers ¢¥(x) on the setS. For a vector ~ SUPPression parametére [0, 1]. When\ = 0, no features are

¢ € R", . € R"is the step function applied to each component SuPpressed while attempting to separdtand5. Wheni = 1,

of # with (z.)i = 1 whenaz; > 0 and(z.); = 0 whenz; < 0, w is totally suppressed to a useless zero solution. Thiggaken

i = 0,...,n. By a separating plane, with respect to two given I the open interva(0, 1), while the smoothing parameter is
point sets4 and B in R", we shall mean a plane that attempts YPically set to 5, so that the smooth exponentiat ¢™** ap-

to separat&®” into two half spaces such that each open halfspace Proximates fairly accurately the step function € 12 on the non-
contains points mostly oft or B. Alternatively, such a plane can  Negative real line. Fok = 0, the error in separating the training
also be interpreted as a classical perceptron [3, 4]. Tenfold cross-data is minimized, but our goal is not to produce a classifier with
validation refers to the re-sampling method which successively re- Minimum error on the the training data, but we wish to determine
moves 10% of the available data for testing a separator generatedhe classifier (neura_l _net\_/vork) to perform with low error on fut_ure_
with the remaining 90%. For a point sét € R™, card(4) will unseen data. Classification error on unseen data, or generalization

denote the cardinality ofl, the number of points ofl. error, is minimized for solutions of (1) with > A > 0 [2].
The separating pT)Iane computed by (1) attempts todpintthe
This work was supported by National Science Foundation GC&R- openThaIfspaC¢x|w ¢ > ~} and putB in the open halfs_pacg
9322479 and Air Force Office of Scientific Research Grant F49620-97- 1|w” # < ~} and thus can be used to generate a parsimonious
1-0326 as Mathematical Programming Technical Report 97-11, October Perceptron classification functige” = — v). whichis 1 ifz € A
1997. and 0 otherwise.
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Figure 3:Three Separating Planes: With the points “correctly” classified
by the first 2 parallel planes discarded, we attempt to correctly classify the
remaining points with the separating plafie | (w?)7 = = 42},
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Figure 1:Separating Planes: Since the separating planpw” = = ~}

does not satisfactorily separatatgx) from 13 (O), we generate two planes

parallel to it so thaf= | wTa > ~1} contains mostly points ot or

(hereA) and{z | wT » < ~o} contains mostly points ofl or 53 (hereB). of A in H and the number of points & in A to the total number
of data points irn{. Specifically:

max(card(ANH), card(B N H))
card( N (AU B))

purity(H, A, B) := .
(2)

The crux of the algorithm is this. Move the plané z = ~
parallel to itself to create two halfspack$ and#{ each contain-
ing mostly points of4 or B to a certain desired purity tolerance.
Note thatboth halfspaces are allowed to contain mostly points of
thesameset, thatis4 and.A, or B andB, ordifferentsets4 and5.
Once this is achieved we throw away the points contained in these
two halfspaces as being classified. The points that tillengsh
X to consider further (i.e. the training data remaining “unclassified”)
lie between the two halfspaces and are:

Figure 2: Hidden Units from Separating Planes: The first two hidden
units of the neural network, corresponding to the plajpes w” = = v}

and{z | wTz = ~4°} respectively, have respective weight vectars = 2. g1 INT 1 INT 1
w, —w! = —w, and thresholds} = ~v1 & —v} = —~g. The third A=A 0 {el(w) e 20, (w) e <m ®)
hidden unit with weight vector? and thresholdy? corresponds to the B =B n{z|(w") x>, (w) 'z <1}

plane{z | (w?)T2 = ~2} depicted in Figure 3.

We represent these “unclassified” points by the matri¢és
andB?. The setd? U B? are those points 6l U B on or between
the parallel plane$z|(w')” » = 71 } and{z|(w')" = = 73 } that

If the single plane generated by (1) is able to discriminate be- have remained after the removal of the points/bt) 5 on the
tweenA! = A andB! = B above a pre-defined acceptable ac- outside of these two planes. See Figures 1 and 3.
curacy, we add one hidden unit to the neural network with weight At this point we attempt to separate “unclassified” data by a
vectorw!' = w and threshold’ = v and proceed to training the ~ plane{z|(w?)"z = +°} obtained by solving (1) wittA replaced

output unit. by A%, B replaced byB?, m replaced by the number of points in
From here on, to follow the indexing in the algorithm, we set .A” andk replaced by the number of points & . See Figure 3.
w' = wandy' = . Ifthe accuracy tolerance is not achieved, we We now add three hidden units to the neural network. See
use the solutiofiw’, 4! ) as a starting point to determine two open  Figure 2. The first hidden unit has weight vecter and threshold
halfspacesi} := {z|(w")Tx > 71} andH} := {z|(v') Tz < ~i. If this hidden unit “fires” for some input vector, this implies
P ESIL == . _ - > T =E _
~ve}, with v} > ~¢ by moving the planes”» = ~ paralleltoitself. ~ that((w')"#—+1). = 1 whichimpliesthatw")" = > ~{, which
The value ofy{ is determined so that thurity of the halfspac@{1 indicates that: € H;. SinceH; was constructed to be a “pure”
is above the accuracy tolerance and the number of points af halfspace, we can correctly classify The second hidden unit has
B in H! is maximal (purity is defined below in Definition 1.1).  weight vector—w" and threshold-~;. Similarly, if this hidden
Similarly, the value ofy¢ is determined so that the purity @ is unit “fires” for a given input vector, we conclude that this input
above the accuracy tolerance and the number of points of B* vector is in?s and can be correctly classified. The third hidden

is maximal. See Figure 1. (Such a construction was first proposedunit is added with weight vectar® and threshold”. If neither of
in [1] using a different separation criterion that is determined by the first two hidden units “fire”, then this hidden unit will attempt

the worst error, without feature suppression anting the sets4 to correctly classify the given input vector.

andB fall only in prescribed halfspaces.) At this stage we have either added one hidden unit, in which
case the plane separating the “unclassified” training data performs

Definition 1.1 Purity. Let be a halfspace. The purity & with with accuracy above our predefined tolerance. Otherwise, we have

respecttad and 5 is the ratio of the maximum number of points to determine two parallel planes defining two “pure” halfspaces,



remove the points “classified” by these two parallel planes, and (iv) If 5 = 0, the weight vector has been defined. If

attempt to classify the remaining data by a single plane. In this 7 # 0, then go to step (ii).

case, three hidden units are added to the neural network. . . . . 5.
We now need to train the output unit of the neural network Given this preemptive output weight vector, threshold- is

constructed. If this resulting network performs wikceptable ~ determined so that the number of po'gtsfﬁﬁ andH 5 misclas-

accuracy on the training data, the Parsimonious Side Propagatiorsified by the plandu € R"|(v *)"u = 7°} is minimized. This is

algorithm terminates. If not, the algorithm continues to iterate, 2@ccomplished by the linesearch procedure mentioned earlier.
adding more hidden units. Now two classification functions based on the two candidate

oY and{3',... 3"} output units are defined. We choose the candidate corresponding

We change notation and Igt*, ... | & > alte i ) o
be theh hidden unit weight vectors and thresholds computed up to the classification function with best performance on the training

to this point. We define the output of hidden unifor a given dataAU B (i.e. the one misclassifying the fewest pointstib B).
input vectorr € R™ as((@*)"x — 4%).. Thus, theh hidden units

map an input vector € R" to a vertex of the unit cube iR".

The problem of training the output unit of the neural network to [
classify.4 andB reduces to separating the vertices of the cube to

which points of4 are mapped from those vertices to whighare [

S ohl(@") e — 4" - ] , @)

=1

Z Ui[(d)h)Tx — 'Ayh]* — 7'2:| .

=1

mapped [4]. We define thex x A matrix of ones and and zeros
Ha € {0,1}™*" where( H 4);; is the output of hidden unjt on
data pointi of .A. Similarly, Hz € {0, 1}**" where(Hg);; is
the output of hidden unif on data point of 5.

We compute two candidate weight vectotsandv?® and thresh-
oldsr! andr? for the output unit and choose that which performs
with maximal accuracy For the first, we calculate a separating
plane{u € R"|(+")Tu = 7'} to separate the points &f 4 from
those ofHg. This plane is calculated by solving (1) with= 0
(emphasizing separation) andreplaced byH 4 and B replaced
by H. We then translate the plane (i.e. vary) to minimize the
number of points off 4 and H s misclassified. This is a simple
linesearch in one dimension. Call the optimal value of this line-
search procedure' . The first candidate output unit weight vector
is thenv' € R" and threshold is’ € R.

The second candidate weight vectéiis preemptive [1] in the
sense that the hidden unit outputs are weighted according to th
order in which they were calculated. This will ensure separation
of the training set by the successive planes in the order in which Algorithm 1.3 Parsimonious Side Propagation (PSP) Algorithm
they were generated. Heré is determined in the following way. Choose: € [0, 1), o > 0 and choose < [0, 1] to be an accuracy

If the best performer performs with accuracy above our pre-
defined tolerance, the algorithm terminates. If the tolerance is not
surpassed, then we proceed to the following post-processing step
prior to beginning another iteration.

The post-processing step consists of removing the output unit
and the last hidden unit computed from the neural network. The
next iteration begins with the plane corresponding to the last hid-
den unit computed to determine two parallel planes which define
“pure” halfspaces over the points “unclassified”. Then points are
removed which fall into these “pure” halfspaces and a candidate
separating plane is computed on the remaining the points. Candi-
date output units are then computed and performance of the classi-
fication functions (4) is determined. Iterations cease when one of
the classification functions (4) performs acceptably. We summa-

ize the algorithm now.

Algorithm 1.2 Preemptive Weighting for the Neural Network tolerancc: o
Output Unit Givenh hidden units § odd), determine thé ele- 0. Initialization. Setd' = A, A' = A, B' = B, B' = B,
ments of the weight vecto? of the output unit as follows. J = lland the number of hidden units = 0. Compute
0 Weight the last hidden unit which attempts to classify the (w’,7") by solving (1).
remaining “unclassified” points by 1,e. setv}, = 1. 1. Determine either one or three hidden units.
1 Weight the remaining hidden units by the reverse order in (i) (“Final” Hidden Unit) If the plane (w’)"z = ~/
which they were calculated as follows: achieves separation correctness greater than or equal
(i) Sety=h—1,k=1landp=(h—1)— k. to « with respecttad’ andB’, add one hidden unit
Remark: 5 is a backward hidden unit countek, is with weight vectorw’ and thresholdy’, seth =
a backward hidden unipair counter except for the h+1.Goto2.
last hidden unit which is counted as a singleton and (i) (Hidden Unit Pair + Candidate “Final” Unit)
pis ttle correct su’perscr!pt on the _datasets consid- () Determine?t? := {z|(w’)Tz > 7/} so that
ered “unclassified” at a given iteration and on par- purity(H?, A’ B) > « and the number of

allel planes computed from these datasets. . - ;
P P data points in? is maximal.

ii) If the halfspac P t - P :

O et s < ) o2 (b) Similarly determing(; := {a](w’)"x < 741
{z | (w?)"x < 4E} contains a majority of points of (c) Setd™" and5*" to be the points considered
rliw) <o jority of p “unclassified”, as in (3), and construct the ma-

B?, thenv = —2F, Sety =5 — 1. trices A7+ and B+L.

(iii) If the halfspace{= | (w?)" > 47} contains a ma- (d) Calculate the candidate last hidden unit by solv-
jority of points ofA?, thenv; = 2. If the halfspace ing (1) with A replaced byA’*!, B replaced
{z | (wP)Te > 71} contains a majority of points of by B’*!, m replaced by the number of rows of
BP, thenv? = .Setj=j—-1,k=k+1and At andk replaced by the number of rows of

p:(h—l)—k. Bt



in the other. For the WPBC dataset normalized to have 0 mean and
1 standard deviation, the average tenfold cross-validation training

ossp 1 set correctness for the Parsimonious Percepthor=( 0.2) was

os 1 68.71% and test set correctness was 66.05%. This perceptron uti-

el | lized an average of 2 of the 32 WPBC features. The average ten-
° ° o s fold cross-validation training set correctness for the Parsimonious

Side Propagation neural networks was 92.449%=(0.2) and test
set correctness was 83.57%, an improvement of 26.53% over the

Average Test Set Correctness.
°
S
3

o7l © 1 Parsimonious Perceptron test set correctness. These neural net-
el ° ° o o | works utilized an average of 3.78 of the WPBC problem features
©e ° ° and had, on average, 5 hidden units. These results are depicted in
I parsimonious Percepiron | Figure 4. For the lonosphere dataset, the average tenfold cross-
osst 1 validation training set correctness for the Parsimonious Perceptron
sl (A = 0.3) was 77.23% and test set correctness was 73.24%. This

perceptron utilized an average of 2.1 of the 84dsphere features.

The average tenfold cross-validation training set correctness for

the Parsimonious Side Propagation neural networks was 90.72%

Figure 4:Tenfold cross-validation correctness versus parsimony parame- (A = 0.3) and test set cc_)rrect_ness was 87.71%, an improvement

ter \ for the WPBC dataset. of 19.76% over the Parsimonious Perceptron test set correctness.
These neural networks utilized an average of 9.1 oft@s$phere
features and had, on average, 6.5 hidden units. A graph similar to
Figure 4 for this dataset was omitted for lack oésp.

Seth =h + 3. Goto 2.

2. Compute weights and threshold of the output unit. De- 3. SUMMARY & CONCLUSION

note the neural network weight vectors and thresholds of \yu have proposed and implemented a fast linear-programming-

theh hidden units ag',.... ,&") and(¥',..., "). based algorithm in which the task of separating successive groups

(i) Determine then x h matrix H . of hidden unit out- of unclassified points is propagated sideways along hidden units

puts on.4 and thek x h matrix Hz of hidden unit until an overall separation accuracy on the training set is reached.
outputs onB. Features deemed unnecessary by the mathematical program are re-

moved by each hidden unit or unit-pair that is added. The economy
in the use of available features and the minimal number of hidden
units added to achieve an acceptable accuracy leads to a parsimo-
nious neural network that appears to generalize well on unseen

(i) (Candidate Output Unit 1). Solve (1) with replaced
by H. and B replaced byH s to determinev!, 71,
Determiner' so that the number of points &f, and
Hp misclassified by the planfs € R™|(v')Tu =

7'} is minimized. data.

(i) (Candidate Output Unit 2). Determine preemptive 4. REFERENCES
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