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ABSTRACT

This paper addresses the problem of detecting determinis-
tic signals in multiplicative noise. The multiplicative noise
model is appropriate for modelling coherent imaging sys-
tems such as SAR and LASER. Locally Optimum (LO)
detectors are derived for any arbitrary multiplicative noise
distribution. The gamma and generalized Gaussian distri-
butions are studied in detail. We also introduce an exten-
sion of the generalized Gaussian density to include asym-
metry. The performance of the LO detectors is studied and
compared with that of the linear correlation detector. The
paper gives insight into the inuence of the tail length of
the noise distribution on the detection power.

1. INTRODUCTION

Signal detection and estimation in noise is an important
problem in many areas of applied science and electrical en-
gineering. The additive noise model has been used mostly.
Relatively much less attention has been given to non-
additive noise models. This paper addresses the detection
of deterministic signals in multiplicative noise.
Multiplicative noise is often characterized as signal de-

pendent in the sense that it vanishes in the absence of sig-
nal. Such a situation is encountered in Doppler-radar [1],
sonar [4] and fading communication channels [13]. This de-
tection model has recently been studied in [2] and [11]. For
harmonic signals, an adaptive line enhancer-based detection
is studied in [6].
By contrast, this paper studies a noise model where the

multiplicative noise is not signal-dependent

Xn = (1 + �sn)Yn; n = 1; :::;N (1)

fsng is a known deterministic sequence, � � 0 is the un-
known signal strength parameter, and fYng is a multiplica-
tive noise sequence with �nite mean � and variance �2. It
is assumed that 1+ �sn > 0, for n = 1; :::;N , and fYng is a
sequence of independent and identically distributed random
variables with probability density function (pdf) fy.
For the additive noise model, the observations are given

by
Xn = �sn + Yn; n = 1; :::;N (2)

Models (1) and (2) have the common property that the ob-
served signal is noise when � = 0, i.e. Xn = Yn . The
mean of Yn in (2) can be assumed zero without loss of gen-
erality (wlog). The non-zero mean can always be removed
from Xn. However, � cannot be assumed zero wlog. for
the multiplicative noise model (1). More speci�cally, it will
be shown that the Detection Power (DP) is an increasing
function of the coherent-to-non-coherent signal power ratio
�2/�2.
Model (1) is appropriate for modelling images produced

by coherent radiation imagery systems, e.g. Synthetic

Aperture Radar (SAR). In this context, n = (i; j) repre-
sents the spatial coordinates (range and azimuth) of the
image pixels. The multiplicative noise (speckle) reduces
the detectability of ground targets and thus decreases the
accuracy of feature classi�cation. An important problem
in speckle imagery is the detection of intensity changes at
object boundaries, i.e. edge detection between two regions
with di�erent reectivities [3]. The resulting SAR image
intensity can be modeled well by (1) when the signal fsng
is a unit step function. When no texture pro�le change oc-
curs in a test window, � = 0 and the observed SAR image
is a stationary process.
Model (1) is also appropriate for a special class of nonsta-

tionary signals, the so-called scaled processes (or uniformly
modulated time series [10]). Such processes are known to
be useful for approximating seismic reectivity data. De-
tecting abrupt variance jump in zero mean random signals
is a special case for model (1).
The paper is organized as follows. The next section de-

rives Locally Optimum (LO) detectors for model (1). Sec-
tion 3 analyses their detection performances. Comparisons
between the LO detectors and the Linear Correlation (LC)
detector are also investigated. Section 4 presents conclu-
sions.

2. LOCALLY OPTIMUM DETECTOR

The optimal Neyman-Pearson (NP) detector for model (1)
requires known �, even for Gaussian noise. Thus, it is not
possible to derive Uniformly Most Powerful (UMP) detec-
tors (which are optimal for all values of � in an antici-
pated interval). UMP detectors do exist for the additive
noise model (2) under the Gaussian assumption [7]. One
approach to this problem is to replace � by its maximum
likelihood estimator [5]. The resulting detector is the well-
known Generalized Likelihood Ratio (GLR) detector. How-
ever, this technique performs poorly for small � and small
sample-size. Moreover, GLR detectors may be too complex
to implement, especially for non Gaussian noise. An alter-
native solution develops LO detectors for which � can be
unknown. In addition to simple implementation, LO detec-
tors are optimum for the challenging case of vanishing SNR
(� ! 0) . Hence, the detection problem considered is

H0 : � = 0 versus H1 : � > 0

A LO detector maximizes the slope of the likelihood ratio
at � = 0 while keeping a �xed False Alarm (FA) probability.
According to the generalized NP lemma and under mild
regularity conditions [7], the LO test is

@p(X=H1)
@�

��
�=0

p(X=H0)

n
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(3)

p(X=Hi) is the likelihood function of the observation vector
X = [X1; :::;XN ] under hypothesis Hi, and � is a threshold
chosen to achieve the desired FA probability.



Using the statistical independence of the noise sequence,
the joint pdf of the observation vector X in (1) is

p(x=�) =
NQ
n=1

1

1 + �sn
fy

�
xn

1 + �sn

�
(4)

where x = [x1; :::; xN ]. The test statistic for LO detector is
found, after some calculations, to be

TLO(X) =
NP
n=1

snXngy(Xn): (5)

where gy(:), a memoryless nolinearity, is given by

gy(:) = �
f 0y(:)

fy(:)
(6)

In (6) f 0y denotes the derivative of fy. The following studies
the gamma and the Generalized Gaussian (GG) distribu-
tions.

2.1. Gamma Density

The pdf of the speckle intensity is known to be a negative-
exponential distribution [3]. Multiple looks are averaged
incoherently to reduce speckle. Thus, the resulting speckle
intensity is gamma distributed for L-look SAR, i.e.

fy(y) =

�
L

�

�L
yL�1

�(L)
e�Ly=� U(y) (7)

where �(L) is the gamma function of order L and U(:) is
the unit step function (U(y) = 1 if y � 0 and U(y) = 0
otherwise).
The UMP does not generally exist since the test statistic

for the optimal NP detector depends upon �:

TO(X) =
NP
n=1

sn xn
1 + �sn

(8)

The memoryless nonlinearity for density (7) is given by

gy(x) =
L

�
�

L� 1

x
(9)

Using (5), the LO detector is found to coincide with the LC
detector:

TLO(X) = TLC(X) =
NP
n=1

snxn (10)

Note that the LC detector is not just LO but also UMP for
constant signals. Thus, for edge detection in SAR images,
the LC detector is UMP under gamma noise modelling.

2.2. Generalized Gaussian Density

The tail length is one of the most important parameters
characterizing noise distributions. A good model to de-
scribe densities with variable tail lengths is the GG distri-
bution [8, 7]. Let Vn = Yn � � and let fv(:) be the corre-
sponding univariate pdf, which is modeled by

fv(v) = pgg(v) :=
�

2��(1=�)
exp

�
�

���� v�
����
��

; (11)

where �(:) is the gamma function, � (� > 0) and � (� > 0)
are the shape and size parameters repectivelly. For � = 2,
fv(v) is the Gaussian density, whereas for � = 1, we obtain
the Laplace distribution. The GG model has been shown to
�t disturbance distributions in many applications of signal

and image processing. For example, impulsive noise can be
modeled by the GG density with small values of �.
For the Gaussian additive noise model, the LC detector is

also UMP. However, even under the Gaussian assumption,
it is generally not possible to obtain UMP detectors for
the multiplicative noise model (1). The su�cient statistic
for the optimal NP detector in the Gaussian multiplicative
noise case requires knowledge of �:

TO(X) =

NX
n=1

sn
1 + �sn

h
2 + �sn
1 + �sn

X2
n � 2�Xn

i
(12)

where the subscript O refers to the optimal NP detector.
The memoryless nonlinearity for the GG density in (11)

is:
gv(v) =

�

��
jvj��1 sgn(v); (13)

Using (5), the LO detector test statistic is

TLO(X) =
NP
n=1

snXn jXn � �j��1 sgn(Xn � �) (14)

For zero mean multiplicative noise, the LO detector is
also UMP for constant signals, i.e. sn = c for n = 1; :::;N
where c = �1, w.l.g.. Constant signals are useful for de-
tecting abrupt changes. In this case, the UMP detector
test statistic is

TUMP (X) = c
NP
n=1

jXnj
� (15)

The GG density is a good model for symmetric distribu-
tions having variable sharpness. To describe asymmetric-
densities, we next propose an extension of the GG distribu-
tion.

2.3. Extension of the GG pdf to include asymme-
try

Asymmetric GG models have been recently proposed in [9]
and [12]. In [9], the proposed model allows the left and
right tail lengths to be di�erent. In [12], the asymmetry
is introduced by di�erent values of the left and right vari-
ances whereas the tail length is the same for both sides.
Both of theses extensions depend upon three parameters
only. A more general model should depend on four param-
eters, left and right variances and shape parameters. Below,
we introduce a new extension of the GG model and show
its ability to overcome modelling limitations of the existing
extensions.
The new extension of the GG pdf, which will be called

asymmetric GG (AGG), is given by

pAGG(v) =

(
�l�r

�r�l�(1=�l)+�l�r�(1=�r)
exp
�
�

��� v�l
����l� ; v < 0

�l�r
�r�l�(1=�l)+�l�r�(1=�r)

exp
�
�
�� v
�r

���r� ; v � 0

(16)
where

�l = �l

h
�(1=�l)
�(3=�l)

i1=2
; �r = �r

h
�(1=�r)
�(3=�r)

i1=2
(17)

�l and �r are the left and right shape parameters, �l and
�r are the left and right variances. Our model reduces to
the one proposed in [12] when �l = �r.
The kth-order moment of the AGG density is found to be
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(18)

where

A = �l
�r

�r
�l
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�
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(19)

The median is equal to zero, while the mean is generally
nonzero. Since Vn has to be zero mean, we consider the
centered AGG (CAGG) density which is de�ned as

fv(v) = pCAGG(v) := pAGG(v �m1) (20)

where m1 is given in (18). Now, the mean is zero and the
median is equal to m1. An interesting class of the CAGG
model is that of densities having equal values for the mean
and median, i.e. m1 = 0. This implies that the tail length
and variance changes occur at the mean value. The con-
straint m1 = 0 implies that the CAGG has only three de-
grees of freedom; the fourth parameter is a function of the
three other parameters. It is worth noting that the models
proposed in [9] and [12] fail in modelling asymmetric densi-
ties whose mean and median are identical. Indeed, for those
models, the constraint m1 = 0 implies symmetry.
The memoryless nonlinearity of the CAGG in (20) is

gLO(v) =

(
�l
�
�l
l

jv�m1j
�l�1 ; v < m1

�r
�
�r
r
jv�m1j

�r�1 ; v � m1
(21)

The LO test statistic (5) is then obtained as

TLO(X) =
�l

�
�l
l

P
Xn<m1+�

snXn [�(Xn �m1 � �)]�l�1

+
�r
��rr

P
Xn�m1+�

snXn [Xn �m1 � �]�r�1 (22)

3. PERFORMANCE ANALYSIS

3.1. Finite-Sample Performance

Analytical derivations of the �nite sample-size detection
performance are in general not tractable. However, it is
possible to get an explicit closed-form for �nite sample-size
performance in the important case of constant amplitude
signals and gamma noise density. In this case, the LO de-
tector, which is the LC detector, is UMP.
The distribution of test statistic (10) is the following

gamma density

pT (t=�) =
�
NL=�
1+�

�NL tNL�1

�(NL) e
� Lt
�(1+�)U(t) (23)

when sn = 1; n = 1; :::;N . The LC detector DP is, for a
given strength parameter � (> 0), given by

PD =

Z 1

�+LN�

pT (t=�)dt (24)

where � is the threshold relative to the �xed FA probabil-
ity. The DP is an increasing function of L, as expected.
The speckle reduction and the image pro�le enhancement
are increasing functions of the number of SAR looks. Nu-
merical evaluations of the DP versus L provides insight into
the number of SAR looks required to obtain some desired
DP. For example, to detect an intensity change of ampli-
tude � = 0:1 with power PD > 0:9 and FA probability
PFA = 0:01, 30 looks of N = 20 pixels SAR images need
to be averaged. The �nite sample-size performance for the
(asymmetric) GG density is carried out using Monte-Carlo
experiments. The results will be presented elsewhere.

3.2. Asymptotic Performance

The e�cacy of a test which decides between � = 0 and � > 0
and which is based on a test statistic T is given by (under
some regularity conditions [7])

� = lim
N!1

�
(@=@�)E fT (X)=H1gj�=0

�2
N var fT (X)=H0g

(25)

where E and var denote the statistical mean and variance
respectively. Using Taylor expansion of TLO(X) at � = 0
and under the following mild assumptions

yfy(y) ! 0
y!1

; y2f 0y(y) ! 0
y!1

; (26)

the e�cacy for the LO detector is found to be

�LO = Ps�y (27)

where

�y = E

(�
Yn

f 0y(Yn)

fy(Yn)

�2
)
� 1 (28)

and Ps is the signal power

Ps = lim
N!1

�P
N

n=1
s2n

�
N

(29)

The proof of this result is skiped here and will be given else-
where. The performance of the LO detector is a monotonic
increasing function of �y. In order to obtain an explicit
expression for �LO as a function of �, we rewrite �y as

�y = �2I0 + 2�I1 + I2; (30)

where I0, I1 and I2 are the following \Fisher informations
for location"

I0 = E

(�
f 0v(Vn)

fv(Vn)

�2
)
; I1 = E

(
Vn

�
f 0v(Vn)

fv(Vn)

�2
)
;

I2 = E

(
V 2
n

�
f 0v(Vn)

fv(Vn)

�2
)
� 1 (31)

I1 vanishes for symmetric noise distributions. It is worth
noting that for the additive noise model (2), the e�cacy of
the LO detector is PsI0.
The LO detector is also asymptoticaly optimal. The

asymptotic optimality can be proved using the heuristic ap-
proach developed in [7] for the additive noise model. Hence,
�LO is the asymptotic optimal performance for our detec-
tion problem.
For the CAGG distribution I0, I1 and I2 are found to be

I0 =
�2l
2�2l

�(2� 1=�l)�(3=�l)

�2(1=�l)
+

�2r
2�2r

�(2� 1=�r)�(3=�r)

�2(1=�r)

I1 = �
�2l
2�l

(�(3=�l))
1=2

�3=2(1=�l)
+

�2r
2�r

(�(3=�r))
1=2

�3=2(1=�r)
+m1I0

I2 =
�l + �r

2
+ 2m1I1 �m2

1I0 (32)

For the gamma distribution, the e�cacy equals PsL,
where L is the number of SAR looks.



3.3. Inuence of the Tail Length

Below, we limit our study to the symmetric GG density, for
which �y is obtained as

�y =
�2

�2
�2�(2� 1=�)�(3=�)

�2(1=�)
+ �; (33)

The parameter �y and the DP are increasing functions
of �2=�2. To get insight into the inuence of � on the
DP, numerical evaluations of �y versus � are carried out for
di�erent values of �2=�2. The results are depicted in �gure
1. It is worth reminding that the detection performance for
the additive noise model is worst for Gaussian noise (� = 2).
This result is no longer true for model (1). The value of �
which minimizes �y depends upon �2=�2. The detection
performance is similar to that of the additive noise model
for large values of �2=�2 (i.e. worst for Gaussian noise).
That is, the multiplicative noise density minimizing the DP
tends to the Gaussian distribution when �2 >> �2.

3.4. Comparison with the LC detector

The Asymptotic Relative E�ciency (ARE) is often em-
ployed as a measure of relative asymptotic detection per-
formance [7]. The e�cacy of the LC detector is given by

�LC = Ps
�2

�2
(34)

Thus, the LC detector fails for detecting signals in zero
mean multiplicative noise. The ARE of the LC detector
with respect to the LO detector is then

ARELC;LO :=
�LC
�LO

=
�2

�2�y
(35)

ARELC;LO is an increasing function of �2=�2. Numer-
ical evaluations of ARELC;LO show that the LO detector
signi�cantly outperforms the LC detector for small �2=�2

and/or large deviation of � from 2. The following limit is
also obtained for the GG distribution

ARELC;LO !
�2

�2
!1

�2(1=�)

�2�(2� 1=�)�(3=�)
(36)

Note that the limit in (36) is unity for Gaussian noise and
equal to 0.5 for � = 1.

4. CONCLUSIONS

This paper has addressed signal detection in multiplicative
noise. It is generally not possible to obtain UMP detectors,
even under Gaussian noise distribution. LO detectors are
then developed for arbitrary multiplicative noise densities.
The gamma and (asymmetric) GG densities are studied in
detail. The paper gives an initial insight into LO detec-
tion schemes for SAR imagery system. The LC detector is
shown to be UMP under gamma noise models for edge de-
tection in SAR images. Furthermore, it is shown that the
LO detectors outperform the LC detector for symmetric
multiplicative noise densities. In some cases, the perfor-
mance improvement is very large. A detailed study of the
detection performance for the asymmetric GG distribution
for both additive and multiplicative noise models will be
reported elsewhere.
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Figure 1. Plots of �y versus �. a) �2=�2 = 2, b)�2=�2 = 50.


