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ABSTRACT

A weighted Viterbi algorithm (HMM) is proposed and ap-
plied in combination with spectral subtraction and Cepstral
Mean Normalization to cancel both additive and convolu-
tional noises in speech recognition. The weighted Viterbi
approach is compared and used in combination with state
duration modelling. The results presented in this paper
show that a proper weight on the information provided by
static parameters can substantially reduce the error rate,
and that the weighting procedure improves better the ro-
bustness of the Viterbi algorithm than the introduction
of temporal constraints with a low computational load.
Finally, it is shown that the weighted Viterbi algorithm
in combination with temporal constraints leads to a high
recognition accuracy at moderate SNR's without the need
of an accurate noise model.

1. INTRODUCTION

In previous papers [1] [2] it was shown that weighting the
information along the signal can substantially improve the
recognition accuracy when the speech signal is corrupted by
additive and convolutional noises, using spectral subtrac-
tion (SS) and mean normalization, two easily implemented
techniques. In [1] [2] the experiments were done using a
one-step weighted DTW and the noise energy in the �lter
bank was poorly estimated only once using 200 ms of non-
speech signal. Those results revealed that the classical con-
cept of matching algorithm where all the frames have the
same weight should be revised in order to take into consid-
eration the reliability in noise cancelling frame by frame. It
was shown that once the noise is added, an uncertainty is
introduced and the original signal cannot be recovered with
100 % accuracy, and the reliability (inverse of uncertainty)
in noise cancelling is dependent on the segmental SNR. It
is worth noting that reliability weighting could be consid-
ered as a formalization of a very important characteristic of
the auditory perception which does not have to recover all
the information of the corrupted speech signal and reduces
the importance of the more noisy intervals to extract the
information that is relevant to understand the message.
The contributions of this paper concern: a) a weighted

Viterbi algorithm and a weighting function without a free
variable; b) combination of this modi�ed Viterbi algorithm
with SS and Cepstral Mean Normalization (CMN), two eas-
ily implemented techniques; c) comparison and combination
of the weighted Viterbi algorithm with state duration mod-
elling. It is shown that weighting the information along the
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signal requires a low computational load and leads to bet-
ter results than the introduction of temporal constraints in
the recognition algorithm. In combination with temporal
constraints, the weighted Viterbi algorithm resulted in a
high recognition accuracy at SNR=18, 12 and 6dB without
a noise model. The approach covered by this paper has not
been found in the literature and seems to be generic and in-
teresting from the practical applications point of view. The
authors believe that weighted matching algorithm approach
could be applied to other problems of robust processing such
as speaker veri�cation and speaker adaptation in noisy con-
ditions.

2. RELIABILITY IN NOISE CANCELLING

In [1] [2] it was suggested that the hidden clean information
of the speech signal is a function of the observed noisy signal

energy x2m, the noise energy n2m and the phase di�erence �m
between the clean signal and noise in channel m:

s2m(�m; n2m; x2m) = 2 �A2 � cos2(�m) +B �

2 �A � cos(�m) �
p
A2 � cos2(�m) +B (1)

where A =
p
n2mcm, B = x2m � n2m and cm is a correc-

tion coe�cient. Using (1) and assuming that the random

variables �m and n2m are uncorrelated, �m is uniformly dis-

tributed between �� and � and that n2m is concentrated
near its mean E[n2m], it is possible to estimate [2]

V ar[log(s2m)jx2m] = (2)

E[log2(s2m)jx2m]� E
2[log(s2m)jx2m]

by means of replacing B with

B = max

n
(x2m � E[n2m]); SsThrm

o
where SsThrm is a constant. This rectifying function is

needed because x2m � E[n2m] may be negative due to �m
and the variation of the noise.
The variance V ar[log(s2m)jx2m] is an estimation of the un-

certainty related to noise cancelling and was used to weight
the matching algorithm [1] [2] and it was proved, by means
of a modi�ed version of the DTW algorithm, that weighting
the information along the signal could substantially reduce
the error rate when the clean signal was corrupted by ad-
ditive and convolutional noises using a poor estimation of
noise. The frame weighting function was de�ned as being

w =

�
1 if TotalV ar � V arThr
V arThr
TotalV ar

if TotalV ar > V arThr
(3)



where

TotalV ar =

14X
m=1

V ar[log(s2m)jx2m] (4)

If SsThrm is low when compared to the noise estimation

E[n2m], V ar[log(s2m)jx2m] may be too high at low segmental
SNR's (when the model loses accuracy). This is counter-

acted by setting an upper bound to V ar[log(s2m)jx2m] equal

to V ar[log(s2m)] which is estimated on the clean signal.
The function represented by (3) sets that the frame

weight would be inversely proportional to the sum of the un-
certainty variances in all the DFT Mel �lters, and V arThr
is a threshold introduced due to the fact that TotalV ar is
theoretically equal to zero for clean speech signal. In the
context of the weighted DTW [1] [2], (3) strongly reduced
the error rate in all the SNR's but the optimal threshold
TotalV ar was case dependent, although it presented a wide
range of only slightly suboptimal values.

3. WEIGHTED VITERBI ALGORITHM

The reliability coe�cient can be included in the Viterbi
algorithm [3] by raising the output probability of observing
the frame Tt to the power of w(t), where t is the time index.
This modi�cation leads to the following algorithm:
STEP 1 : Initialization. For each state i,

�1(i) = �i � [bi(T1)]
w(1)

 1(i) = 0

STEP 2 : Recursion. From t=2 to LT , for all states j,

�t(j) =Maxi[�t�1(i)� aij]� [bj(Tt)]
w(t)

 t(j) = argmaxi[�t�1(i) � aij ]

STEP 3: End: (* indicates the optimised results).

P
� =Maxs2Sf [�LT (s)]

where LT is the frame sequence length and sF is the set
of possible �nal states. Consequently, the in
uence of the
probability bi(Tt�1) in the decision Maxi[�t�1(i) � aij] =

Maxi[Maxh[�t�2(h)�ahi]� [bi(Tt�1)]w(t�1)�aij] at STEP
2 depends on w(t � 1): if w(t � 1) = 1 (high reliability),
the in
uence of bi(Tt�1) is maximum; if w(t� 1) = 0 (very
low reliability), the in
uence of bi(Tt�1) is zero because
[bi(Tt�1)]

0 = 1 for all states i.
Preliminary experiments with the modi�ed version of the

Viterbi algorithm were done using (3) where TotalV ar was
computed using the uncertainty variances in the logarithm
domain as de�ned in (2). Results mainly con�rmed the
previous experiments with the weighted DP equation , but
another weighting function was de�ned in the cepstral do-
main using the HMM variances in order to eliminate the
threshold V arThr

3.1. Mapping from the Log to the Cepstral Do-
main

The cepstral coe�cients are estimated by means of

cn =

MX
m=1

Em � cos[
� � n

N
� (m� 0:5)] (5)

where Em is the logarithm of the energy at the output of
the �lter m that results from the SS estimation, and N is
the number of cepstral coe�cients. If the log energies are
supposed uncorrelated, V ar[cnjX] can be re-written as

V ar[cnjX] =
MX
m=1

V ar[log(s2m)jx2m] � cos
2[
�n

N
(m� 0:5)] (6)

The components s2m(�m; n2m; x2m) depend on the clean
speech and noise signals and are clearly correlated specially
for contiguous �lters. However, although the uncorrelated
condition was a rough approximation, it was enough to lead
to good results.

3.2. Modi�ed weighting function

The weighting function that (3) attempts to model could
also be approximated by

w =
V arThr

V arThr + TotalV ar
(7)

Experiments with the weighted version of DTW showed
that (3) and (7) lead to similar results. In order to avoid
the threshold V arThr, a weighting function based on (7)
was proposed using the variances of the HMM's. In the
experiments here reported, each word was modelled using
an 8-state left-to-right topology without skip-state transi-
tion, with a single multivariate Gaussian density per state
and a diagonal covariance matrix, and the modi�ed frame
weighting function is de�ned as

w =
1

N

NX
n=1

�2�;i;n

�2�;i;n + V ar[cnjX]
(8)

where �2�;i;n is the variance of coe�cient n, state i and
model �. The function shown in (8) compares the uncer-
tainty variance of coe�cient n with the variance of the co-
e�cient n in a phonetic class or state of a HMM. More-
over, if uncertainty variance is high for one coe�cient, w is
not necessarily low because the weight is the sum of terms

��;i;n

��;i;n+V ar[cnjX] . Finally, if the signal is clean V ar[cnjX] is

zero for all n and w = 1.

4. TEMPORAL CONSTRAINTS

In the ordinary HMM topology, the transition probability
is represented by a constant that leads to a geometric prob-
ability density for state duration which is not accurate for
most cases. Several methods to include temporal constraint
have been proposed. Parametric state duration distribu-
tions, Poisson [4] and gamma [5], were used in the train-
ing process but the method requires a high computational
load. In [6] it was proposed a backtracking procedure where
the duration contribution to the standard Viterbi metric is
added after collecting possible candidate paths. The disad-
vantage of this approach is that the correct alignment path
may not be one of these candidates. A signi�cant improve-
ment of the error rate when the speech signal was corrupted
by additive noise was reported in [7] by means of introduc-
ing the state duration constraints in the training procedure,
using the state sequences that are likely to happen and ful-
�ll the temporal restrictions.



In order to include temporal constraints in the HMM
recognizer, it was followed the procedure suggested by [8]
where the the state durations are modelled using gamma
distributions. Every state was associated to a gamma distri-
bution whose parameters were estimated using the training
database after the HMM's had been trained. The discrete
gamma distribution is given by [8]:

d(�) = K � e���� � �p�1 (9)

where � = 0; 1; 2; ::: is the duration of a given state in
number of frames, � > 0, p > 0 and K is a normalizing
term. This distribution was proved to �t better the empiri-
cal (state and word) duration distributions than the Gaus-
sian or geometric functions [8]. After training the HMM's,
the optimal state sequence was estimated for every training
utterace using the Viterbi algorithm and the parameters
� and p were estimated for every state in each model by
means of:

� =
E(�)

V ar(�)
(10)

p =
E2(�)

V ar(�)
(11)

where E(�) and V ar(�) are, respectively, the mean and
variance of the state duration directly computed using
Viterbi alignment. Beside E(�) and V ar(�), min(�) and
max(�) were also estimated.
Instead of using the duration metric suggested in [8], the

transition probabilities were de�ned as

a
(�)
i;i = Prob(st+1 = ijst = st��+1 = i)

a
(�)
i;j = Prob(st+1 = jjst = st�1 = ::: = st��+1 = i)

Using these de�nitions for the transition probabilities,

a
(�)
i;i and a(�)i;j can be estimated by

a
(�)
i;i =

Di(�)� di(�)

Di(�)
(12)

a
(�)
i;j =

di(�)

Di(�)
(13)

where Di(�) is the probability of state i being active for
t � � :

Di(�) =

tmaxX
t=�

d(t) (14)

In order to include the possible min and max durations,
the transition probabilities were modi�ed to:

ai;i =

(
1 if � < tmin

0 if � � tmax

a
(�)
i;i otherwise

(15)

ai;j =

(
0 if � < tmin

1 if � � tmax

a
(�)
i;j otherwise

(16)

where tmin = 0:8 �min(�) and tmax = 1:5 �max(�). The
constants 0.8 and 1.5 introduce a tolerance to the min and
max duration for every state.
The recognition experiments were speaker dependent us-

ing isolated words (digits). In some cases it was observed
that the variation in state duration was very low, which
resulted in a low V ar(�) which in turn caused a low recog-
nition accuracy. To counteract this, a threshold was intro-
duced to set a 
oor for V ar(�). According to some experi-
ments, a suitable value for this threshold would be 4.

5. EXPERIMENTS

The proposed methods were tested with speaker-dependent
isolated word (English digits from 0 to 9) recognition ex-
periments. The tests were carried out employing the two
speakers (one female and one male), and the car and speech
noises from the Noisex database [9]. Where convolutional
noise experiments were performed a spectral tilt composed
by a 
at frequency response up to a break point frequency
of 200Hz followed by a +3dB/oct tilt above 250Hz was ap-
plied to the noisy signals. The signals were downsampled to
8000 samples/sec. The signal was divided in 25ms frames
with 12.5ms overlapping. Each frame was processed with a
Hamming window before the spectral estimation. The band
from 300 to 3400 Hz was covered with 14 Mel DFT �lters.
At the output of each channel the energy was computed, SS
[10] and CMN were applied and the log of the energy was
estimated. The overestimation parameter for SS � = 2:0
and the noise spectral 
oor � = 0:01. In every frame 10
cepstral coe�cients were computed. In tests with only ad-
ditive noise, only SS was used. In tests with both additive
and convolutional noises, CMN was applied after SS and
the coe�cient means were computed using one utterance
per word of the vocabulary (digits) every time.
In these experiments the noise estimation was made only

once using just 250ms of non-speech signal and was kept
constant for all the experiments at the same global SNR.
The threshold SsThrm (used to compute B in (2) ) was

estimated according to [11] and was approximately equal to
20dB for all the channels. Each word was modelled using
an 8-state left-to-right HMM without skip-state transition,
with a single multivariate Gaussian density per state and
a diagonal covariance matrix. The HMM's and the state
duration distributions were estimated by means of the clean
signal training utterances. In the experiments HTK V.2.0
with modi�cations to include the temporal constraints and
reliability weighting in the testing procedure was used for
the HMM experiments. The following con�gurations were
tested: the ordinary Viterbi algorithm V it ; the weighted
version of the Viterbi algorithm using (8) as the weighting
function, W2 � V it ; the ordinary Viterbi algorithm with
state duration constraints using gamma distributions, V it�
T ; and �nally, W1�V it�T andW2�V it�T , the weighted
algorithm with temporal constraints using, respectively, (3)
and (8) as weighting coe�cients.

6. DISCUSSION AND CONCLUSION

As can be seen in Tables 1 and 2, the weighted version of
the Viterbi algorithm using (8), W2 � V it, as weighting
function strongly reduced the error rate at all the SNR's.
The ordinary Viterbi algorithm with temporal constraints
V it � T also reduced the error rate but the improvement
was poorer than with the weighted algorithm. The best re-
sults were achieved when weighting procedure was applied
in combination with state duration modelling W2�V it�T .



Table 1. Recognition error rate(%) for speech signal
corrupted by additive noise (car noise).

SNR 18dB 12dB 6dB 0dB

Vit 1.5 16.5 66 86
W2-Vit 0 0 2 26
Vit-T 0 5 15.5 28.5

W2-Vit-T 0 0 0 13

Table 2. Recognition error rate(%) for speech cor-
rupted by additive noise (speech noise).

SNR 18dB 12dB 6dB 0dB

Vit 4.5 38.5 78.5 90
W2-Vit 0 2 12 58
Vit-T 1 4.5 14.5 38

W2-Vit-T 0 0 4.5 38

It is interesting to highlight that weighting the information
along the signal requires a low computational load and was
more e�ective than the introduction of the temporal con-
straints. In other words, the weighted Viterbi algorithm is
more robust to unlikely alignments because the recognition
tends always to rely on those frames with higher segmental
SNR. Although not shown in Tables 1 and 2, the weighted
algorithm using (3) gave better results than V it � T but
worse than W2 � V it. According to Fig. 1, the weighting
function (8) W2 � V it � T led to better results than the
ordinary Viterbi algorithm just with temporal constraints
V it�T and thanW1�V it�T (using (3) and with the opti-
mal V arThr) without the need of a free variable. Although
not reported in this paper, this behaviour was also observed
for all the noises from [9] considered in this research (car,
speech, Lynx, oper.room and factory).
Tests with additive and convolutional noise (Tables 3 and

4) indicate that the weighting procedure can also be ef-
fective if CMN is applied after SS. The weighted Viterbi
algorithm is only one step and can be used by either iso-
lated or continuous word recognition and a high accuracy
was observed at SNR= 18, 12 and 6dB using no free vari-
ables (except the ones related to SS), only static parameters
and a poor estimation of noise made in just 200ms. Cur-
rently work is being done to improve the accuracy at lower
SNR. Finally, it is worth mentioning that weighted match-
ing algorithms could also be used with other noise cancelling
methods.
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