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ABSTRACT

The problem of �tting a model composed of a number of su-
perimposed signals to noisy observations is addressed. An
approach allowing us to evaluate both the number of sig-
nals and their characteristics is presented. The idea is to
search for a parsimonious representation of the data. The
parsimony is insured by adding to the maximum likelihood
criterion a regularization term built upon the `1-norm of the
weights. Di�erent equivalent formulations of the criterion
are presented. They lead to appealing physical interpreta-
tions. Due to limited space, we can only sketch here an
analysis of the performance of the algorithm that has been
successfully applied to di�erent classes of problems [6],[7].

1. INTRODUCTION

In many di�erent domains, one faces the problem of �t-
ting a model composed of a small number of superimposed
signals to noisy observations. Among the problems that be-
long to this set one can cite the detection and estimation
of the parameters of closely spaced sinusoids in noise, the
estimation of width, position (delay) and amplitude of su-
perimposed pulses of known shape in noise. If the additive
noise is gaussian and white (or of known covariance), one
can solve the problem using the maximum likelihood (ML)
approach. But this approach has at least two drawbacks :
it requires the prior knowledge of the number of signals that
are present and, in di�cult situations, a precise initial point
must be known. This second drawback is indeed the ma-
jor issue since the search for a good initial point, which is
needed because the ML function has many local extrema, is
extremely time consuming and it is this initialization pro-
cedure that is the crucial problem. The local improvement
achieved by the ML criterion is of marginal interest.

Most of the iterative algorithms including gradient type
searches [1] or expectation-maximize type algorithms will
converge to an extremum that will essentially depend upon
the initial point that was used. A dynamic programming
approach [2] has been recently designed to circumvent this
di�culty, it heavily relies on a local (limited) interaction
signal model (LISMO) that can be seen as an ad hoc as-
sumption in a dynamic programming context. Its robust-
ness with respect to this assumption is evaluated in [3] and
appears quite reasonable.

Our approach is completely di�erent, it amounts to
rewrite the problem as a quadratic program with essen-
tially two parameters to tune. It similarly relies on a ad
hoc assumption which somehow measures the di�culty of a

scenario with respect to this approach and seems to be satis-
�ed reasonably often. In a multipath time-delay estimation
context [6], it seems to outperform other approaches. It is
worth noting that a whole set of bayesian approaches [5]
developped in general to handle problems from geophysics
actually address similar problems with yet fully di�erent
techniques. The aim there is to restore sparse spike trains
distorted by a linear system in additive noise.

2. THE MODEL

One observes a noisy vector that can be modeled as the
sum of an unknown number P of signals belonging to one
or several parametrized families of known vector functions
and white noise e. In the simplest case, one observes a m�
dimensional vector b̂ :

b̂ =

PX
i=1

�pa(�p) + e = b+ e

where a(�) is a known family of vectors parametrized by
a scalar � and e is the white noise vector with covariance
matrix �2e I. The objective is to recover the deterministic
part b of b̂ i.e. to estimate P the number of components
and to identify the parameters �p = (�p; �p). It is assumed
that P � m and that � belongs to a known compact set.
The di�erent di�culties one can face in this type of problem
are the detection of weak isolated components (low signal to
noise ratios), the resolution of several closely spaced compo-
nents (close � 's), the detection of a weak component hidden
by a stronger one, and any combination of these di�culties.

Without loss of generality, we consider that the eu-
clidean norm of a(�) is independant of � and equal to one,
that the order of magnitudes of the amplitudes �'s is around
one so that one should think of �e as being quite small.

Let us further note that, since m the dimension of the
observation vector is constant, evaluate the asymptotic per-
formance of an estimator amounts, in this setting, to eval-
uate it as the signal to noise ratio (SNR) goes to in�nity

and thus as �e ! 0. Indeed, one can think of b̂ as being
a vector estimated from T scalar obervations, e is then the
estimation error whose variance is of order 1=T that goes
to zero as T !1.

If the noise e is assumed to be gaussian, the ML es-
timates of the parameters �k = (�p; �p) are obtained by
solving the following non-linear least-squares problem :

min
�;�

kb̂�

qX
p=1

�pa(�p)k
2
2 (ML)



In this approach one needs to �x q the number of compo-
nents and, for di�cult scenarios, an initial point close to
the global optimum must be known. If the number q of
�tted components is larger than the true number P , the
additional degrees of freedom are used to somehow model
the noise realization. It is easy to check that the amplitudes
associated with such false components will in our case be
of the order of �e and that the decrease each induces on
the value of the criterion is of the order of �2e . These values
are obtained from standard regression analysis and are in
agreement with the widely used Akaike's information cri-
terion that could be used to estimate the true number of
components in a ML type approach.

3. THE CRITERION

In order to transform the non-linear least-square problem
(ML) into an easier one, we propose to uniformly discretize
the values of � over its compact domain. We denote h the
discretization step and n the number of resulting potential
values of � . With the n vectors aj (where aj = a(�j) with
�j = jh+�o, for instance), we build a matrix A of dimension
(m;n) with n � m and we propose to solve the following
quadratic program, for an adequatly tuned positive real pa-
rameter � :

min
X

kb̂ �AXk22 + � kXk1 (QP)

where kXk1 denotes the `1-norm : kXk1 =
Pn

1
jxij. This

can indeed be transformed into a quadratic program and its
unique global minimum can be obtained using standard al-
gorithms available from any scienti�c program library. We
will assume that any subset of m columns in A forms a set
of linearly independent vectors. This is not to be consid-
ered as a limitation. As a matter of fact, there is a huge
gap between the ML criterion (ML) and this one (QP) and
the link between the minimum of (QP) and the problem un-
der investigation may not be obvious. Since there are now
more unknowns than observations AX = b̂ has an in�nite
number of solutions. The `1-norm in the additive term in
(QP) is there to select sparse solutions and the parameter
� must further be tuned to possibly select the sparse and
true solution. The two parameters to be tuned are � and
the discretization step h. The value of h will mainly be
�xed by the accuracy we want to achieve.

3.1. About the optimum of QP

One can make the following remarks about the solution X�

of (QP) as � goes from 0 to +1.

� For � = 0, one is left with minX kb̂�AXk22, and since
there are more unknowns than equations (n > m), the value
of the minimum is zero and it is attained for all points in a
convex set (a linear variety), some of them having at most
m non-zero components.

� For � = 0+ i.e. for � positive and arbitrarly close to
zero, the solution is attained at the point(s) in the previous
set having least `1-norm (we do not prove this). Again there
is a solution having at most m non-zero components.

� For all � � 2 kAT b̂k1, the solution is X� = 0. This is
an easy consequence of a result presented below in section
3.2. One can easily check that for such �'s, by moving a

component xi away from zero, the decrease in the `2-term
in (QP) is lower than the increase in the `1-term.

� For � between these two values, there might be so-
lutions having any number of non-zero components and
namely P or better 2P non-zero components. We seek this
type of solution.

Remember that P denotes the number of components
in the scenario, since these components will generically all
fall in between two points of the discretization grid, the
two neighboring columns in A, at the least, will be needed
to approximatively reconstruct each component. In fact the
interesting property of this criterion, that is due to the pres-
ence of the `1-norm in the additive term, is that it favors
among the many di�erent ways to approximatively recon-
struct a non-existing component, the way that uses just
the two neighbors. The value of � actually allows us to
tune the degree with which an approximate reconstruction
is permitted. For � = 0, the reconstruction must be exact.

The best we can thus expect from our approach when
applied to a scenario with P components is to get a solution
X� with 2P non-zero (or signi�cant) components appear-
ing by pairs (neighboring columns). To deduce from such
an X� the estimates of the parameters �p, we then associate
which each pair of non-zero components, an amplitude �̂p
equal to their sum and an estimate �̂p obtained by linear in-
terpolation of the "indices" of the two columns. The trans-
formation that converts the optimum X� into estimates �̂
is denoted G(:) i.e. �̂ = G(X�) and will be detailed later.

3.2. Optimality conditions for QP

The criterion (QP) is convex but not continuously di�eren-
tiable. A necessary and su�cient condition for X� to be
a global optimum is that the vector 0 is a sub-gradient of
the criterion at X� [8]. A vector  is a sub-gradient of f
at X� if f(X) � f(X�) + T (X �X�). If the vector 0 is a
sub-gradient at X� then f(X) � f(X�) and X� is clearly
a minimum.

Since (QP) is non-smooth at zero only, one must distin-
guish in X� the zero components from the non-zero com-
ponents. For the non-zero components, we denote �X�, the
sub-gradient is unique and equal to the gradient. Replacing
then kXk1 by X

T sgnX (where sgn X stands for sign of X)
and denoting �A� the columns in A associated with �X�, we
get by nulling the gradient of (QP) with respect to �X� :

�2 �AT (b̂� �A �X�) + � sgn �X� = 0

which we rewritte :
�AT (b̂� �A �X�) = �=2 sgn �X�

Omitting some details, this leads to the following expression
for the non-zero components of X� :

�X� = ( �AT �A)�1 �AT b̂� �=2 ( �AT �A)�1 sgn �X�

Note that the solution of (QP) can only be obtained through
an iterative search. This is by no means a relation giving the
solution. It is only an implicit relation since �X� appears on
both sides. It nevertheless allows to compute the optimum
X� if one knows beforehand which components will be non
zero and their signs. The second term in this expression is
a bias term that is due to the penalty term in (QP). Once



�X�, and thus �A�, are known, it is easy to compute this bias
and to substract it from X�. We will always do so when
applying this scheme.

The vector 0 is a sub-gradient for the zero components
in X�, if the criterion increases when they are taken non
zero. This is the case if the absolute value of the partial
derivative of the quadratic term in (QP) is smaller than � :

jaTj (b̂� �A �X�)j = jaTj (b̂�A X�)j < �=2 8aj =2 �A

The following condition thus holds for all the components :

k AT (b̂�AX�) k1 � �=2 (C)

where kXk1 denotes the `1-norm, kXk1 = max1�i�n jxij.
Condition (C) holds with equality for the "active" columns

of A (those in �A) and with inequality for the others.
One can establish that the optimum of (QP) also solves :

min
X
kAXk2

2
s.t. kAT (AX � b)k

1
�

�

2
(We do not prove this.) The criterion (QP) thus selects
the solution X� which minimizes kAXk2

2
and achieves (C),

a condition on the outputs of the matched �lter when ap-
plied to the residues. It has an interesting (and quite illu-
minating) physical interpretation. After having substracted

AX� = �A �X� from the observations b̂, the residues are such
that their correlation with the columns of A (the output of
a matched �lter) never exceeds �=2. This seems to be a far
more sensible way to match the observations than the one
used in matching pursuit type algorithms [9], which work in
an iterative way and substract successively the best match-
ing component from the current residues until a criterion
(threshold) is satis�ed. Here a similar result is achieved in
a single shot.

3.3. The noise free case

Even in the absence of noise, nothing guaranties that the
true scenario can be retrieved from the minimum of our
criterion for an adequate value of �. Let us consider the

quite simple case where b̂ = b =
PP

1
�pap = AoXo = �Ao

�Xo

i.e there is no noise present and all the P components of
the scenario are columns of A. At best, we then expect
that there is a value of � for which the solution X� to (QP)
is a biased version of Xo i.e. the non-zero components of Xo

and X� are in the same position and have the same sign.
We have seen above that the optimum of (QP) is com-

pletely de�ned if one knows the indices and the signs of the
non-zero components. Introducing this knowledge into the
relations giving the non-zero components �X� of the solution
X� we obtain the following expression for the solution we
seek : �X� = �Xo � �=2 ( �AT

o
�Ao)

�1 sgn �Xo

with �Xo = �A+
o b where �A+

o = ( �AT
o
�Ao)

�1 �AT
o denotes the

pseudo-inverse of �Ao. It remains to check if this solution
completed by zeroes satis�es the n conditions in (C).

They hold by construction for the P rows in �AT
o , let us

check the n�P other rows of AT . Replacing �X� by its ex-
pression given above, the following expression is obtained :

j aTj �A( �AT
o
�Ao)

�1 sgn �Xo j � 1 for aj =2 �Ao

With d = �Ao( �A
T
o
�Ao)

�1sgn �Xo, the last relation becomes :
jaTj dj � 1. Note that � is no longer present in these condi-
tions and only appears in the expression of �X�.

In summary, for (QP) to yield the good solution in this
case the following conditions have to be satis�ed :

� the scenario dependent vector d = �Ao( �A
T
o
�Ao)

�1sgn �Xo

must be such that jaTj dj � 1 for aj =2 �Ao,
� � has to be chosen (small enough) such that sgn �Xo =

sgn �X� The �rst of these two conditions is an identi�ability
conditions that depends on the di�culty of the scenario.
It can be given a geometric interpretation in terms of a
separating hyperplane, the vector d de�nes a hyperplane
that must separate the true columns in �Ao from the other
columns : for the true columns it satis�es j �AT

o dj = 1 while
for the others it should satisfy jaTj dj < 1.

If the scenario dependent vector d satis�es this property,
there is a whole domain of � that yields the good solution,
i.e. for which the true columns in A are selected with the
good signs. The fact that this good solution X� is indeed
biased is not hampering since the bias is easily removed.

3.4. The general case

Let us now sketch what happens in the general case, for

b̂ =
PP

1
�pa(�p) + e. In this case, the sought-for solution

is completely de�ned by selecting for each true component
a(�p) the two neighboring columns in A and and by assign-
ing them the sign of �p.

Strictly speaking, this is only valid if �e and h are small
enough, since otherwise the noise may be such that the best
(ML) estimate of a component no longer lies between the
so-de�ned two columns.

One proceeds as in the section above. There are two
additional terms in X�, one induced by the noise, the other
one by the reconstruction error. Due to limited space we
do not enter into the details. The conclusion is essentially
the same as in the section above. If an hyperplane (de�ned
in a similar way) is separating, there exists a domain in
� for which the optimum of the criterion has the sought-
for property i.e. has its non-zero components with the right
sign in the correct positions. The lower bound of the domain
is now no longer zero but depends, among other factors, on
the noise.

4. CHOICE OF THE DISCRETIZATION STEP

We already indicated that the discretization step h had to
be chosen small enough to be able to achieve the desired
accuracy. We choose it such that it does not preclude our
method to attain the Cramer Rao bounds. We analyze this
point in this section.

4.1. Linear interpolation and linear approximation

For a component a� , let �A be the matrix built upon the two
neighboring columns that are associated with the parameter
values �o and �1, where �o < � < �1 and �1 � �o = h. The
component a� can then be approximatively reconstructed
by linear interpolation :

a� '
�1 � �

�1 � �o
ao +

� � �o
�1 � �o

a1 = �A �Xl

For a regular enough vector function a(�), the recon-
struction error �� = a� � �A �Xl is easily shown to be of order
h2 and to attain its maximum for � = (�1 + �o)=2.



But one can also consider the best linear approximation
which minimizes : ka� � �A �Xk2. The optimum is attained
for �Xo = �A+a� , and the reconstruction error denoted �t is
at most of order h2, since it is smaller than �t.

4.2. Bias in �̂

For the ease of exposition, we consider the simplest (single

component) case b̂ = �a� . Applying our scheme to b̂, we
seek a solution that selects the two neighboring columns.
With �A the matrix built upon these two columns, we have
the following expression for the two non-zero component of
the optimum of (QP) : �X� = � �A+a� �

�
2
( �AT �A)�1 [1 1]T .

We have then to associate with �X� an estimate �̂ = G( �X�)
of � and � . Before we do so, we remove the bias (second)
term in �X� and de�ne �X�u = � �A+a� where the subscript :u
stands for unbiased. The expression of the transformation
G(:) is :

�̂ =

�
�̂
�̂

�
=

�
xo + x1
xo�o+x1�1
xo+x1

�
= G( �X�u)

Our aim is to estimate the order of magnitude of the
error ���̂ as a function of h. Using Taylor series expansion,
it is lengthy but not di�cult to show that this error is of
order h2.

4.3. Variance in �̂

Here we analyze the e�ect upon the variance of the esti-
mates of the discretization of � . For a single or isolated
component b̂ = �a� + e
the ML estimates are obtained through : min� kb̂��a(�)k

2.
In our approach, using the same notation as above, �X�u will
at best realize : min �X kb̂� �A �Xk2. We assume again that �
is such that only the two neighboring columns are selected
and describe here the result obtained after removal of the
bias in �X�.

The analysis is more intricate than for the bias, we pro-
pose to write �a� = �A �Xl + �t where �Xl is de�ned in sec-
tion 4.1 and is such that G( �Xl) yields the exact parame-
ter. The unbiased solution can then be written : �X�u =
�Xl + �A+�t + �A+e. The classical error term, that yields the
standard deviation of the estimates, is the last one, it is of
order �e. The second term is the one due to the discretiza-
tion. He can be made negligible with respect to the third
by choosing h = O(�e) since (section 4.1) it is of order h2.

Since this same choice reduces the deterministic bias
term analyzed above to a negligible quantity, we decide to
take h = O(�e) in our scheme.

One can further show that, at least in this simple case
and provided -as assumed above- that the true columns are
selected by our procedure, the estimate �̂ = G( �X�u) attains
then the Cramer Rao bounds.

5. HOW TO TUNE �

We have indicated in section 3.4 that provided the sce-
nario was separable , there is a domain of � for which only
the "true" columns have non-zero weights. Remember that
"true" means in general for each component present in b the
two neighboring columns. The analysis we have sketched
there, indeed yields a lower bound for this domain that

depends mainly upon the noise standard deviation and an
upperbound that depends upon the signal to noise ratio.

A straightforward way to arrive at the same qualitative
conclusion is as follows. The �rst step is to note that (QP)
is equivalent to the following optimization problem :

min
X

kAX � b̂k22 s.t. kXk1 � B

this holds because both problems are convex and the La-
grangien of this problem is nothing but (QP). There is an
unknown implicit relation between � in (QP) and the bound
B above. For a given B, the value of � that renders (QP)
equivalent to this problem, is thus the value of the Lagrang-
ien multiplier of this problem at its optimum. But the La-
grangien multiplier of this problem has an interpretation in
terms of sensitivity of the value of the minimum with re-
spect to a variation of the second member of the constraint.
Using then the order of magnitudes indicated at the end of
section 2 for spurious components in the ML approach, we
obtain that for � = O(�e), the optimum X� of (QP) should
just have a few small (O(�e)) components besides all the
true ones.

6. CONCLUDING REMARKS

Due to lack of space, the analysis, as it is presented here,
is incomplete. Many details have been left out and no sim-
ulations are presented. The performance of the approach
has however already been tested in [4],[6] and the interested
reader can check these references for the implementation is-
sues and performance evaluation of similar schemes.
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