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ABSTRACT
In this paper, a method for the design of perfect reconstruction
(PR) linear-phase prototypes for cosine-modulated filter banks
with discrete coefficients is presented. Such prototypes are of
great interest for efficient hardware implementations. The design
procedure is based on a subspace approach that allows to
linearly combine PR prototype filters in such a way that the
resulting filter also is a PR prototype. Within a given subspace
the weights of the optimal linear combination can be easily
computed via an eigenanalysis. The filter design is carried out
iteratively, while the PR property is guaranteed throughout the
design process. No non-linear optimization routine is needed.

1. INTRODUCTION

Cosine-modulated filter banks are very popular in signal pro-
cessing, because of their efficiency [1][2][3][4]. In this class
of filter banks, all analysis and synthesis filters are modulated
versions of a single prototype. The implementation of the com-
plete filter bank depicted in Figure 1 then only requires the
implementation of polyphase components of the prototype and
of the modulation, which itself can be efficiently realized via
FFTs.

The quality of the filter bank for a given application mainly
depends on the properties of the prototype. For the design of
the prototype, which will be denoted asP (z), we can follow
various strategies. A method that structurally guarantees the
perfect-reconstruction (PR) property of the filter bank is the use
of lattice factorizations [5]. For this method a good starting point
is required, because we have to optimize angles in a cascade
of lattices and the relations between the angles and the impulse
response are highly nonlinear. A second method that typically
is less sensitive to the starting point is the quadratic-constraint
algorithm [6]. This method does not inherently guarantee PR,
but the PR requirements can be satisfied with arbitrary accuracy.
A simple but efficient iterative design method for practically
useful near PR prototypes was presented in [7]. This method
is based on the older pseudo-QMF ideas ([1]) rather than on
the PR constraints ([2][3][4]), so that on principle only near PR
prototypes can be designed.

In this paper a new design method is proposed that, like the
lattice factorization, guarantees the PR property. The optimization
is performed iteratively by optimizing linear combinations of

impulse responses within suitable linear subspaces. Throughout
the filter design process, no non-linear optimization routine is
required. However, non-linear optimization may be used in order
to achieve further improvements.

Filters with integer-valued coefficients are very much desirable,
because they allow the efficient implementation of filter banks.
The simplest way to design such an integer prototype is to
quantize the coefficients of a given prototype. Clearly, when
doing this, the PR property of the prototype gets lost and we will
need relatively many bits in order to achieve at least an almost
perfect reconstruction. In this paper a different way is proposed
that keeps the PR property throughout the design process while
dealing only with integers. The design process can be initialized
with a simple rectangular window. From such a starting point,
PR integer prototypes with desired coefficient wordlengths can
be designed in a simple way.

2. COSINE-MODULATED FILTER BANKS

In cosine-modulated filter banks the impulse responses of the
analysis and synthesis filters,hk(n) and gk(n), can be derived
from a single prototypep(n) in the following way [2][3][4]:

hk(n) = p(n)
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gk(n) = hk(L� 1� n);

wheren = 0; : : : ; L�1; k = 0; : : : ;M�1; and�k = �
4
(�1)k.

M is the number of channels, which is assumed to be even.
The filter length,L, is chosen asL = 2mM , m > 1, wherem
is an integer. Furthermore, critical subsampling is considered.

If the low-pass prototypep(n) satisfies the symmetry condition

p(n) = p(L� n� 1); n = 0; : : : ;
L

2
� 1; (2)

and if the polyphase components

Pk(z) =

m�1X
n=0

z�n pk(n); pk(n) = p(2nM + k); (3)

of the prototype satisfy the condition

~Pk(z) Pk(z) + ~PM+k(z) PM+k(z) = 1; k = 0; : : : ;
M

2
�1;

(4)



then the filter bank is paraunitary, that is, the filter bank has
the PR property and, moreover, it provides a unitary transform
[2][3][4][5]. Terms with a tilde accent in (4), like~Pk(z), are
the z-transforms of sequencesp�k(�n), which are derived from
pk(n) by complex conjugation and time reversion. We restrict us
here to the case of real-valued prototypes (i.e.p�k(n) = pk(n)).
A product of the type ~Pk(z)Pk(z) in (4) is nothing but the
z-transform of the autocorrelation sequence ofpk(n).

3. OPTIMALITY CRITERION

When a prototype has a high stopband attenuation (low stopband
energy) it will give good performance in a wide range of
applications. Therefore we use the stopband energy as the
performance measure and formulate the optimization problem
using the following Rayleigh quotient:

C(p) =
pT Vs p

pT p

!
= min (5)

The vector p contains the unknown filter coefficients,p =
[p(0); p(1); : : : ; p(L� 1)]T and Vs is a weighting matrix de-
fined by

p
T
Vs p =

Z
stopband

jP (!)j2 d!; (6)

whereP (!) is the Fourier transform ofp(n).

Unfortunately, the optimal solution to (5) will not satisfy
condition (4), that is, the optimal filter in the sense of (5) cannot
be used as a prototype for a PR cosine-modulated filter bank,
and condition (4) must be included in the optimization process.
In the sequel a new subspace-based approach for this task will
be presented.

4. SUBSPACE APPROACH

Let us consider the optimality criterion (5), and let us assume
that we have a set of basis vectors for the design of our optimal
prototypep(n). That is, let us assume that we can writep in
the following form, where matrixF contains the basis and�
contains the coefficients to be optimized:

p = F �: (7)

If all linear combinations of the columns of matrixF lead to a
PR prototypep, we can formulate the optimization problem as

C(�) =
�T Us �

�T Up �

!
= min (8)

whereUs = F TVsF , Up = F TF , and we can solve (8) for
the optimal� in an unrestricted way. Thus, the solution is given
by the eigenvector� corresponding to the minimum eigenvalue
� of the generalized eigenvalue problem

Us � = � Up �: (9)

As will be shown below, the drawback of the subspace method
considered above is that it cannot be complete. In other words,
we cannot find a linear subspace of the spaceIR

L where all
prototypesp(n) of lengthL satisfying (4) lie in the subspace,
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Figure 1. Critically subsampled M-channel filter bank.

and where all linear combinations of the basis vectors of this
subspace are PR prototypes [8]. However, in the following we
will see that the principle of a PR basis approach works within
a two-dimensional subspace.

4.1. Bases for two-dimensional subspaces

For any given linear-phase prototypea(n) we can construct a
second linear-phase PR prototypeb(n) in such a way that any
linear combination ofa(n) andb(n) results in a prototype for a
PR cosine-modulated filter bank (up to some scaling factor
).
This means

~Pk(z) Pk(z) + ~PM+k(z) PM+k(z) = 
; 
 6= 0; (10)

where
Pk(z) = �1Ak(z) + �2 Bk(z) (11)

Herein,Ak(z) andBk(z) satisfy the PR condition (4):

~Ak(z) Ak(z) + ~AM+k(z) AM+k(z) = 1;

~Bk(z) Bk(z) + ~BM+k(z) BM+k(z) = 1:
(12)

Given the filtersAk(z) and Bk(z), we can seek for the best
linear combination of these filters in the sense of (8), where

� =
h
�1
�2

i
; F =

h
a(0) a(1) : : : a(L� 1)
b(0) b(1) : : : b(L� 1)

iT
: (13)

Clearly, we cannot find the global optimum this way, but we
can use this procedure iteratively. We will return to this point
in Section 5.

Let Ak(z); k = 0; : : : ; 2M�1; be the polyphase components of
a given prototype filter. In order to construct filtersBk(z); k =
0; : : : ; 2M � 1; in such a way that (10) is satisfied, we combine
(10) and (11). SinceAk(z) and Bk(z) satisfy (12), this leads
to the following condition:

~Ak(z)Bk(z) +Ak(z) ~Bk(z) + ~AM+k(z)BM+k(z)

+AM+k(z) ~BM+k(z) = c = const.;
(14)

wherec = (
��21��22)=(�1�2). GivenAk(z) andAM+k(z),
(14) is nothing but an underdetermined linear set of equations
for Bk(z) and BM+k(z). This means, we can choose any
solution to (14) forc 6= 0 and add any further solution from
the nullspace (c = 0). SinceBk(z) = Ak(z) is a simple (but
valid) solution to (14), it becomes clear that we should look for



solutions in the nullspace only, that is, we should solve (14) for
c = 0:

~Ak(z)Bk(z) +Ak(z) ~Bk(z) + ~AM+k(z)BM+k(z)

+AM+k(z) ~BM+k(z) = 0; k = 0; : : : ; M
2
� 1:

(15)

The following solutions to (15) can be identified:

Bk(z) = �AM+k(z); BM+k(z) = �Ak(z); (16)

and

Bk(z) = �z�(m�1) ~AM+k(z); BM+k(z) = �z�(m�1) ~Ak(z):
(17)

Note that (15) can be interpreted as an orthogonality relation
between the vectors[ ~Ak(z); Ak(z); ~AM+k(z); AM+k(z)] and
[ ~Bk(z); Bk(z); ~BM+k(z); BM+k(z)].

4.2. Linear Independence

In the construction of our polyphase filtersBk(z) we have
the choice to take the solution from (16) or from (17), and
we can also choose the signs. This means that (16) and (17)
define a whole class of impulse responsesb(n). The number
of impulse responsesb(n) that can be constructed via (16) and
(17) by trying all permutations is2M . One half of this set
can be generated from the other half by a simple sign change,
so that we can expect no more than2M�1 filters b(n) with
different frequency responses. Such a set of2M�1 filters will be
denoted asB. All elements ofB satisfy the PR condition (12),
and they are orthogonal toa(n) in the sense of (15). However,
evaluating (15) for different solutions of (16) and (17) (instead
of Ak(z) and Bk(z)) shows that we have no orthogonality
within B. This means that the subspace approach only allows
the construction of twodimensional subspaces with the property
that any linear combination of the elements of the subspace
yields a PR prototype.

4.3. Number of linearly independent filters inB

It was already mentioned above that a setB consists of2M�1

filters. However, it can be shown that onlyM of these solutions
are linearly independent (the proof is given in [8]). This fact
can be used in order to reduce the computational cost of the
filter optimization.

In the special case ofL = 2M , the equations (16) and (17) are
equivalent, because our polyphase filtersAk(z) are just scalars

(Ak(z) = ~Ak(z) = a(k)), and we only have2
M

2
�1 elements of

B with different magnitude frequency responses andM
2

linearly
independent vectors inB.

5. FILTER OPTIMIZATION AND RESULTS

5.1. Filter Design

The filter-design method consists of the following steps:

1. Given a PR prototypea(n), we construct the setB of
filters b(n) from (16) and (17). Alternatively, we construct
a subset ofB, denoted asB0, that containsM linearly
independent elements.

2. For all filters fromB (or B0) we solve the optimization
problem (8), and we select the best candidate. Note that
the eigenvalue problem (9), which gives the solution to
(8), only contains matrices of size2� 2, so that simple
analytical solutions for the eigenvalues and eigenvectors
can be provided.

3. The optimal linear combination ofa(n) and the selected
b(n) is taken as a new initial solution for Step 1. The
process is continued until convergence is achieved.

Note that one important feature of the process is the fact that
the PR property is preserved throughout the optimization.

Basically, the design-method described above leads to prototypes
with infinite-precision coefficients. However, one remarkable
feature of the orthogonality relations (16) and (17) is the fact
that the prototypeB(z) essentially has the same coefficients as
the prototypeA(z): The filter B(z) is composed from flipped
and/or sign-changed polyphase components of the filterA(z).
This means, if we start the design with a PR filterA(z) having
only integer coefficients and if we also use integer weights�1
and �2 in (11) then also the linear combination ofA(z) and
B(z) will have integer coefficients.

The simplest choice for the initial filter with integer coefficients
is a rectangular window which just provides the polyphase
transform of the input signal. That is, in anM -band setting
only M subsequent coefficients are equal to one and all other
(formally introduced) coefficients are zero. In order to design
PR filters with integer coefficients it then remains to quantize
the weights:

�k := round(� �k); k = 1; 2; � 2 IR:

For a full search overB we have to take2M�1 filters into
account in each iteration step. For increasingM this means an
exponentially increasing computation effort. An alternative is to
search only over the subsetB0 of linearly independent filters.

On the one hand, the fact that we only haveM linearly
independent elements inB is an advantage, because we can
reduce the computation effort of the optimization process by
performing the search overB0. On the other hand, for constant
M and increasing filter length we have a constant number of
linearly independent filters inB. This means, for long filters we
have some mismatch between the number of filter coefficients
that have to be optimized and the degree of freedom. However,
for moderate filter lengths the convergence properties turned out
to be excellent.

5.2. Design Examples

Table 1 shows prototype coefficients with different wordlengths
for M = 8 bands and filter lengthsL = 4M . Because of
symmetry, only the first2M coefficients are listed. The frequency
responses of the filters from Table 1 are shown in Figure 2.
The comparison to the ELT prototype from ([9]) shows that
(in relation to the wordlengths) the prototypes have very good
performances. For example, the filter (c) with coefficients in the
range [�1; 8] has an acceptable frequency response for image



coding purposes while the implementation cost can be kept
extremely low.

Prototype coefficients forM = 4, 8, and 16 bands can be
downloaded from [10].

6. CONCLUSION

In this paper, a novel method for the design of prototypes for PR
cosine-modulated filter banks has been presented. The approach
is iterative, while the PR property is preserved throughout the
optimization. Each iteration step consists of the computation of
optimal linear combinations of impulse responses. The linear
combinations have to be performed for filters from suitable linear
subspaces. The computational cost of the filter optimization is
extremely low. The most important feature of the new design
method is the fact that it allows the design of PR prototypes
with integer-valued coefficients which are desirable for efficient
hardware realizations.
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Table 1
Perfect reconstruction prototypes for 8-band filter banks with

integer coefficients

p(n)

n (a) (b) (c) (d) (e) (f)

0 -1 -6 -72 -2190
1 -1 -4 -97 -1901
2 0 0 -41 -1681
3 0 -6 -48 -426
4 0 7 56 497
5 0 0 62 2542
6 2 8 194 3802
7 2 17 204 6205
8 1 4 24 390 9678
9 1 4 33 524 13197

10 1 6 41 656 16359
11 1 6 48 774 19398
12 1 2 7 56 903 22631
13 1 2 7 62 992 24738
14 1 2 8 66 1048 26394
15 1 2 8 68 1105 27421

C(p) 211.7 40.4 11.9 5.8 2.8 1.6
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Figure 2. Frequency responses for the8-channel prototypes
from Table 1. For comparison purposes the frequency response
of the ELT prototype is depicted with dotted lines.


