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ABSTRACT

A method for applying Kalman filtering to speechsignalscorrupted
by colored noise is presented. Both speech and colored noise are
modeled asautoregressive(AR) processesusing speechandsilence
regions determined by an automatic end-point detector. Dueto the
non-stationary nature of the speech signal, non-stationary Kalman
filter is used. Experimentsindicate that non-stationary Kalman fil-
tering outperforms the stationary case, the average SNR improve-
ment increasing from 0.53 dB to 2.3 dB. Even better resultsare ob-
tained if noiseis considered also non-stationary, in addition to be-
ing colored, achieving an average of 7.14 dB SNR improvement.

1. INTRODUCTION

In many cases background noise is the dominant source of errors
in automatic speech recognition (ASR). This is especially true for
public phones, and phones located in industrial environments. If
not modeled properly, the high intensity noiseis often confused for
speech by the recognition system.

Thebest recognition performancein presenceof stationary noise
isachievedif background and speech modelsaretrained and tested
under the same noise conditions. For telephone services this ap-
proachis not practical sincethere are many different environments
where calls can originate. Thus, other techniques that better dis-
criminate between noiseand speech, or reducethe background noise
must be used.

There have been numerousstudies[2], [4], [5] dealing with en-
hancement of speech contaminated by noise. However, most ap-
proachesuse the standard stationary Gaussian white noise assump-
tion. Colored noise assumption [1] proved to be very useful for
speech enhancement [2].

Themethod usedin our work to improve the signal-to-background

noise ratio (SNR) for speech signals is Kalman filtering. Colored
noise that corrupts the speech signal is modeled from white noise
through a shaping filter.

Resultsindicatethat non-stationary Kalmanfilterslead to asig-
nificantgainin SNR, thusvisibly improving the quality of the speech
signal.

2. PROBLEM STATEMENT

Consider the noise free speech signal described by the p-th order
AR model
P
s(n) = Zaks(n — k) + w(n) Q)

k=1
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wherew () iszero-mean Gaussianwhite noisewith intensity Q(n ).
Thecanonical state-spacemodel isobtained by concatenatingp con-
secutive values of the speech signal s, denoting them by x; (n) =

[s(n—p+1) s(n—p+2) ... s(n)]" andwriting corresponding

equationsin matrix form

0 1 0 0
x1(n) = : xi(n— 1) + w(n)
0 0 1 0
Gp  Gp_1 a1 1
s(n) = [ 0 0 1 ] x1(n) 2
which can be rewritten as
x1(n) = A:x1(n) + Gw(n)
s(n) = Csx1(n) ®)

The speechsignal s(») is contaminated by zero-mean additive
Gaussian noise v(n) whichis colored, but independent of w(n)

y(n) = s(n) +o(n) @

Colored noise will be modeled by the same type of AR equa-
tions, but of lower order m

o(n) = bw(n —1) + u(n) (5)

whereu(n) iszero-mean Gaussianwhite noisewith intensity R(n),
not correlated with w(n ). The canonical state-spacemodel for col-
ored noise is obtained similarly, by concatenating m consecutive
valuesof » and denotingthem by x2(n) = [v(n —m + 1) v(n —
m+2) ... v(n)]%.

0 1 0 0

x2(n) = : xa(n — 1) + u(n)
0 0 1 0
b bmet by 1

v(n) = [ 0 0 1 ]XQ(TL) (6)

which can be rewritten as
x2(n) = Anx2(n) + Gnu(n)

v(n) = Chrx2(n) (1)



In conclusion, the process is modeled by the following state-
space equations

x1(n) = A:x1(n — 1) + Gyw(n) 8)
x2(n) = Anx2(n — 1) + Gru(n) 9)
y(n) = Cyx1(n) + Crxa(n) (20

By adjoining statesin (8) and (9) the augmented system will have
the form
x(n) = Aux(n — 1) + Gar(n — 1)
y(n) = Cax(n) (1)

where x(n) = [xl (n) x2(n)]%, v(n) = [w(n) w(n)]¥, and the
augmented matrices are

A, 0O _| Gs
Aa:|:0 An:|7 Ga—|:0

C. = [Cs C,]
Relations (11) describealinear systemdriven by white noiser with

Q) 0

0 R(n)
surement noise; by including colored noise model as an additional
state in the state-space model, noise that affected the output ¥ has
been moved into the state x.

intensity matrix Qq(n) = but with no mea-

3. THEKALMANFILTER

The equations of the non-stationary Kalman filter for system (11)
which has“ perfect measurements’ are [3]

x(n) = A(n —1x(n—1)+ K(n—1)y(n)

K(n) = A.P(n)CT[C.P(n)CT™!
i (12)
A(n) = Ay — K(n)C,
P(n+1) = An)P(n)AL + GuQu(n)GE

wherex(n) istheoptimal estimateof x(n), K (n) isthefilter gain,
and P(«n) isthe covarianceof theerror betweentheactual x () and
its estimate X(n).

Sinceonly an estimate of the noise-freespeechsignal s isneeded,
the output equation of the Kalman filter will be

i(n) = [C. 0] [ o ] 13)

where 0,,, isarow vector of dimension 1 having al entries zero,
and é(n) isthe optimal estimate of the speech signal.

The state-spacemodel allowsalso estimation of the colored noise
that corrupts the speech signal. For this, a second output equation
needsto be added to the Kalman filter

#(n) = [0, Cu] [ o ] 14

with 0, arow vector with of dimension p with all entries zero.

It must be noted here that Kalman filter offers optimal estimate
when the system parameters are known, so that it isimportant that
systemmatrices A, G, Ca, andespecially noiseintensity Q.(n),
be modeled as accurate as possible.

4. PARAMETER ESTIMATION

Thespeechsignal ismodeledusing linear predictiveanalysis(LPC),
whichisthe predominant techniquefor estimating basic speech pa-

rameters [6]. Theideabehind LPC, is that speech samples can be
expressed as a linear combination of past speech samples, so that

the speech signal can be modeled asan AR process(1). Theimpor-

tance of linear prediction liesin the accuracy with which the basic
model appliesto speech, whichis- asit hasalready been mentioned

- of crucial importance for Kalman filtering.

An automatic speech end-point detector is used for discrimina-
tion of speechvs. silence[6] in the noisy speechsignal; modelsfor
speech/noiseare obtained from speech/silenceregionsindicated by
the end-point detector. However, the filtering algorithm is not de-
pending on the end-point information.

In order to fully utilize the power of Kalman filtering - which
is non-stationary filtering as opposed to Wiener filtering which is
stationary - the most important problem is to accurately detect the
non-stationary noise, especially impulsive noise*.

The total intensity of the speech signal contaminated with un-
correlated noiseis P = @@ + R, where @ is the intensity of the
clean speech signal, and R is noiseintensity.

The power of y(n) is smoothed by alow-passfilter:

P(n) = (1= 2)P(n — 1) + Ay(n) (15)

with the time constant defined by A. The higher the value of A, the
longer the period over which the power is averaged.

Conventionally, theintensity of stationary noiseisindependent
of time, i.e. R(n) = R, Vn, andit is estimated from the portion
of the signal assumed to be noise (beginning of the utterance), or
declared as background signal by a speech end-pointer.

In addition to the stationary noise estimates from the portion
of the signal declared as noise, a new approachis used to estimate
time-varying noiseintensity based on distinct properties of speech
and noise signals:

¢ Sudden changesin signal intensity indicate a beginning or
an end of aimpulsive noise. Therate of change for thein-
tensity of the speech signal is limited by the inertia of hu-
man speech production system. It is widely accepted that
the speechsignal remainsstationary (produced by unchanged
vocal tract) within 5to 10 ms segments, thusany any quicker
change in the speech signal can be attributed to impulsive
noise. We estimate the instantaneous noise intensity R(x)
to be proportional to therate of signal intensity change. The
changeismeasuredasadifference between dlightly and heav-
ily smoothed variance of the signal.

¢ Noisesignal tendsto be dominated by high frequency com-
ponentsandis much lessautocorrel ated (is morewhite) than
the speechsignal. Thedegreeof noisinessiscomputed based
onfirst autocorrel ation coefficient and the position of the dom-
inant pole of the low order (2 or 3) LPC model of the sig-
nal on very short segments (around 5 ms). Other methods
like zero-crossing, reflection coefficients, and signal inten-
sity can also be used.

Thenoiseintensity is made proportional to the degree of noisiness.
The duration of the impulse is determined either by following the
change of parameters (intensity, spectrum), or by assumption that
the impulse noise is short (20-50 ms). In either case the sudden

Lthat isto accurately estimate time-varying noise intensity
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Figure1: Original SNR distribution before and after non-stationary
Kalman filtering of non-stationary colored noise

change of contaminated speech intensity is immediately reflected
innoiseintensity. Inlater case, therapid changein the signal inten-
sity isimmediately passed to noiseintensity whichisthan decaying
slowly with a prescribed rate.

5. EXPERIMENTAL RESULTS

Theperformancecriterion used for eval uating the proposed Kalman
filtering algorithmsis the SNR defined by:

N,

Ny 2nmr & (M)
N.

NLn En:l 'U2 (n)

with speech s, noise v, and their corresponding lengths N, N,
determined using the automatic end-point detector.

In additionto theimprovementin SNR, whichwill be discussed
below, Kalman filtering has also abeneficial effect on end-point de-
tection. For very noisy signals, in which speech and noise intensi-
ties are of the same order, the end-pointer very often fails to detect
accurate end-points, part of speech being labeled as noise. On the
other hand, impulsive noise (bangs or clicks), which has dynam-
ics similar to short speech segments, may be labeled as speech by
the end-pointer. Also, very often noise at the beginning and at the
end of the speech, aswell asin between words or group of wordsis
labeled as speech, thus falsely increasing the SNR. Figure 1 shows
SNRdistribution for 1800testing files, beforeand after non-stationary
Kaman filtering of non-stationary colored noise. It is easily no-
ticed that the number of fileswith SNR greater than 25 dB isalmost
doublewhenthisis cal culatedwith respect toinitial end-pointsthan
whenitiscalculated with respect to end-pointsdetermined after fil-
tering. Also, for the majority of very noisy files(0to 5 dB) the end-
pointer labels speech as noise before filtering, while after filtering
end-points are more accurate.

SNR = 101log,, [dB] (16)

Number of files/bin

e

1
0 5 10 5 3 40 45 50

[N

Overall average 0.5304 dB. |

o
=
T

o
S
T

‘ ‘ Hﬁﬂﬁ

1 1 1
5 10 15 20 25 30 35 40 45 50
Bins - Original SNR [dB] with respect to endpoints after filtering

S
[N
T

o

Average SNR improvement/bin

o

Figure2: SNR improvement for stationary Kalman filtering of col-
ored noise

For stationary Kalmanfiltering the SNR improvementsarecom-
parableto thosein [2], even though their SNR definition is slightly
different. The average SNR improvement is 0.54 dB, the maxi-
mum being as much as 0.85 dB. Figure 2 presentsthe distribution
of the SNR improvement for stationary Kalman filtering, with re-
spect to the initial SNR of the signal. The same observation asin
[2] can be made about the order of the system: SNR improvements
increase with increasing the order of both the speech model, and
the colored noise model. However, al experiments(stationary and
non-stationary) have used the same orders p = 10 for speech and
m = 5 for colored noise. The use of non-stationary Kalman filter-
ing improves results from stationary case. Even when considering
that noise is white and stationary, but speech is non-stationary, re-
sultsare better asit can be observed from figure 3. Results become
even better when stationary colored noise model is used, figure 4.

However, the best results are obtained when both speech and
colored noise, are considered non-stationary, with intensities esti-
mated according to the procedures of the previous section; average
improvementis 7.1 dB, with more than 8 dB for signalswith initial
SNR € [15,25] dB, figure5.

All the above mentioned results are containedin Table 1 which
gives an overview of average SNR improvements that can be ob-
tained with Kalman filtering.

Speech Noise Noise | Avg. SNR
int. Q int. R type impr. [dB]

stat. stat. colored 0.53
non-stat. stat. white 1.87
non-stat. stat. colored 23
non-stat. | non-stat. | colored 7.14

Table 1: Average SNR improvement after Kalman filtering



Number of files/bin

Average SNR improvement/bin

a1
[=}
(=}

S
o
o

w
oS
(=)

200

=
o
(=)

o

25

o

T
) Overall average 1.8654 dB

I

1
5 30 35 40 50

1 1 1 1 1
5 10 15 20 2

uﬂﬂ

0 5 10 15 20 25 30 35 40 45 50

Bins - Original SNR [dB] with respect to endpoints after filtering

Figure 3: SNR improvement for non-stationary Kalman filtering of
white noise
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Figure5: SNRimprovement for non-stationary Kalman filtering of
non-stationary colored noise

6. CONCLUSIONS

The paper showsthat non-stationary Kalman filtering isagood tool
for improving the SNR for speechsignal scorrupted by non-stationary
colored noise. As it has already been mentioned, best results are
achieved when both speech, and colored noise are modeled asnon-
stationary signals, SNR being improved with an averageof 7.1 dB.

The paper also showsthat end-point detection isimproved; the
end-point detector applied on the filtered signal gives more accu-
rate results than on the original signal.
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