
KALMAN FILTERING OF COLORED NOISE FOR SPEECH ENHANCEMENT

Dimitrie C. Popescu

Department of Electrical Engineering
Rutgers University

Piscataway, NJ 08855-0909

Ilija Zeljković
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ABSTRACT

A method for applying Kalman filtering to speechsignals corrupted
by colored noise is presented. Both speech and colored noise are
modeled as autoregressive (AR) processesusing speechand silence
regions determined by an automatic end-point detector. Due to the
non-stationary nature of the speech signal, non-stationary Kalman
filter is used. Experiments indicate that non-stationary Kalman fil-
tering outperforms the stationary case, the average SNR improve-
ment increasing from 0.53 dB to 2.3 dB. Even better results are ob-
tained if noise is considered also non-stationary, in addition to be-
ing colored, achieving an average of 7.14 dB SNR improvement.

1. INTRODUCTION

In many cases background noise is the dominant source of errors
in automatic speech recognition (ASR). This is especially true for
public phones, and phones located in industrial environments. If
not modeled properly, the high intensity noise is often confused for
speech by the recognition system.

The best recognition performance in presenceof stationary noise
is achieved if background and speech models are trained and tested
under the same noise conditions. For telephone services this ap-
proach is not practical since there are many different environments
where calls can originate. Thus, other techniques that better dis-
criminate between noise and speech,or reduce the backgroundnoise
must be used.

There have been numerous studies [2], [4], [5] dealing with en-
hancement of speech contaminated by noise. However, most ap-
proaches use the standard stationary Gaussian white noise assump-
tion. Colored noise assumption [1] proved to be very useful for
speech enhancement [2].

The method used in our work to improve the signal-to-background
noise ratio (SNR) for speech signals is Kalman filtering. Colored
noise that corrupts the speech signal is modeled from white noise
through a shaping filter.

Results indicate that non-stationary Kalman filters lead to a sig-
nificantgain in SNR, thus visibly improving the quality of the speech
signal.

2. PROBLEM STATEMENT

Consider the noise free speech signal described by the p-th order
AR model

s(n) =

pX
k=1

aks(n� k) +w(n) (1)

wherew(n) is zero-mean Gaussianwhite noise with intensityQ(n).
The canonicalstate-space model is obtained by concatenatingp con-
secutive values of the speech signal s, denoting them by x1(n) =
[s(n�p+1) s(n�p+2) : : : s(n)]T and writing corresponding
equations in matrix form
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which can be rewritten as

x1(n) = Asx1(n) +Gsw(n)

s(n) = Csx1(n) (3)

The speech signal s(n) is contaminated by zero-mean additive
Gaussian noise v(n) which is colored, but independent of w(n)

y(n) = s(n) + v(n) (4)

Colored noise will be modeled by the same type of AR equa-
tions, but of lower order m

v(n) =

mX
l=1

blv(n� l) + u(n) (5)

whereu(n) is zero-mean Gaussianwhite noise with intensityR(n),
not correlated with w(n). The canonical state-space model for col-
ored noise is obtained similarly, by concatenating m consecutive
values of v and denoting them by x2(n) = [v(n�m+1) v(n�
m+ 2) : : : v(n)]T .
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which can be rewritten as

x2(n) = Anx2(n) +Gnu(n)

v(n) = Cnx2(n) (7)



In conclusion, the process is modeled by the following state-
space equations

x1(n) = Asx1(n� 1) +Gsw(n) (8)

x2(n) = Anx2(n� 1) + Gnu(n) (9)

y(n) = Csx1(n) + Cnx2(n) (10)

By adjoining states in (8) and (9) the augmented system will have
the form

x(n) = Aax(n� 1) +Ga�(n� 1)

y(n) = Cax(n) (11)

where x(n) = [x1(n) x2(n)]
T , �(n) = [w(n) u(n)]T , and the

augmented matrices are

Aa =
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Relations (11) describe a linear system driven by white noise� with

intensity matrix Qa(n) =

�
Q(n) 0
0 R(n)

�
but with no mea-

surement noise; by including colored noise model as an additional
state in the state-space model, noise that affected the output y has
been moved into the state x.

3. THE KALMAN FILTER

The equations of the non-stationary Kalman filter for system (11)
which has “perfect measurements” are [3]

x̂(n) = Â(n� 1)x̂(n� 1) +K(n� 1)y(n)
K(n) = AaP (n)CT

a [CaP (n)CT
a ]
�1
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T
a

(12)

where x̂(n) is the optimal estimate of x(n),K(n) is the filter gain,
andP (n) is the covariance of the error between the actualx(n) and
its estimate x̂(n).

Since only an estimate of the noise-free speechsignal s is needed,
the output equation of the Kalman filter will be

ŝ(n) = [Cs 0m]

�
x̂1(n)
x̂2(n)

�
(13)

where 0m is a row vector of dimension m having all entries zero,
and ŝ(n) is the optimal estimate of the speech signal.

The state-spacemodelallows also estimation of the colored noise
that corrupts the speech signal. For this, a second output equation
needs to be added to the Kalman filter

v̂(n) = [0p Cn]

�
x̂1(n)
x̂2(n)

�
(14)

with 0p a row vector with of dimension p with all entries zero.
It must be noted here that Kalman filter offers optimal estimate

when the system parameters are known, so that it is important that
system matricesAa,Ga,Ca, and especially noise intensityQa(n),
be modeled as accurate as possible.

4. PARAMETER ESTIMATION

The speechsignal is modeledusing linear predictive analysis (LPC),
which is the predominant technique for estimating basic speech pa-
rameters [6]. The idea behind LPC, is that speech samples can be
expressed as a linear combination of past speech samples, so that
the speech signal can be modeled as an AR process (1). The impor-
tance of linear prediction lies in the accuracy with which the basic
model applies to speech, which is - as it has already been mentioned
- of crucial importance for Kalman filtering.

An automatic speech end-point detector is used for discrimina-
tion of speech vs. silence [6] in the noisy speech signal; models for
speech/noiseare obtained from speech/silenceregions indicated by
the end-point detector. However, the filtering algorithm is not de-
pending on the end-point information.

In order to fully utilize the power of Kalman filtering - which
is non-stationary filtering as opposed to Wiener filtering which is
stationary - the most important problem is to accurately detect the
non-stationary noise, especially impulsive noise 1.

The total intensity of the speech signal contaminated with un-
correlated noise is P = Q + R, where Q is the intensity of the
clean speech signal, and R is noise intensity.

The power of y(n) is smoothed by a low-pass filter:

P (n) = (1 � �)P (n� 1) + �y(n)2 (15)

with the time constant defined by �. The higher the value of �, the
longer the period over which the power is averaged.

Conventionally, the intensity of stationary noise is independent
of time, i.e. R(n) = R; 8n, and it is estimated from the portion
of the signal assumed to be noise (beginning of the utterance), or
declared as background signal by a speech end-pointer.

In addition to the stationary noise estimates from the portion
of the signal declared as noise, a new approach is used to estimate
time-varying noise intensity based on distinct properties of speech
and noise signals:

� Sudden changes in signal intensity indicate a beginning or
an end of a impulsive noise. The rate of change for the in-
tensity of the speech signal is limited by the inertia of hu-
man speech production system. It is widely accepted that
the speechsignal remains stationary (produced by unchanged
vocal tract) within 5 to 10 ms segments, thus any any quicker
change in the speech signal can be attributed to impulsive
noise. We estimate the instantaneous noise intensity R(n)
to be proportional to the rate of signal intensity change. The
change is measuredas a difference between slightly and heav-
ily smoothed variance of the signal.

� Noise signal tends to be dominated by high frequency com-
ponents and is much less autocorrelated (is more white) than
the speechsignal. The degreeof noisiness is computed based
on first autocorrelation coefficient and the position of the dom-
inant pole of the low order (2 or 3) LPC model of the sig-
nal on very short segments (around 5 ms). Other methods
like zero-crossing, reflection coefficients, and signal inten-
sity can also be used.

The noise intensity is made proportional to the degree of noisiness.
The duration of the impulse is determined either by following the
change of parameters (intensity, spectrum), or by assumption that
the impulse noise is short (20-50 ms). In either case the sudden

1that is to accurately estimate time-varying noise intensity
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Figure 1: Original SNR distribution before and after non-stationary
Kalman filtering of non-stationary colored noise

change of contaminated speech intensity is immediately reflected
in noise intensity. In later case, the rapid change in the signal inten-
sity is immediately passed to noise intensity which is than decaying
slowly with a prescribed rate.

5. EXPERIMENTAL RESULTS

The performance criterion used for evaluating the proposed Kalman
filtering algorithms is the SNR defined by:

SNR = 10 log
10

1

Ns

PNs

n=1
s2(n)

1

Nn

PNn

n=1
v2(n)

[dB] (16)

with speech s, noise v, and their corresponding lengths Ns, Nn,
determined using the automatic end-point detector.

In addition to the improvement in SNR, which will be discussed
below, Kalman filtering has also a beneficial effect on end-point de-
tection. For very noisy signals, in which speech and noise intensi-
ties are of the same order, the end-pointer very often fails to detect
accurate end-points, part of speech being labeled as noise. On the
other hand, impulsive noise (bangs or clicks), which has dynam-
ics similar to short speech segments, may be labeled as speech by
the end-pointer. Also, very often noise at the beginning and at the
end of the speech, as well as in between words or group of words is
labeled as speech, thus falsely increasing the SNR. Figure 1 shows
SNR distribution for 1800 testing files, before and after non-stationary
Kalman filtering of non-stationary colored noise. It is easily no-
ticed that the number of files with SNR greater than 25 dB is almost
double when this is calculatedwith respect to initial end-points than
when it is calculated with respect to end-points determined after fil-
tering. Also, for the majority of very noisy files (0 to 5 dB) the end-
pointer labels speech as noise before filtering, while after filtering
end-points are more accurate.
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Figure 2: SNR improvement for stationary Kalman filtering of col-
ored noise

For stationary Kalman filtering the SNR improvements are com-
parable to those in [2], even though their SNR definition is slightly
different. The average SNR improvement is 0.54 dB, the maxi-
mum being as much as 0.85 dB. Figure 2 presents the distribution
of the SNR improvement for stationary Kalman filtering, with re-
spect to the initial SNR of the signal. The same observation as in
[2] can be made about the order of the system: SNR improvements
increase with increasing the order of both the speech model, and
the colored noise model. However, all experiments (stationary and
non-stationary) have used the same orders p = 10 for speech and
m = 5 for colored noise. The use of non-stationary Kalman filter-
ing improves results from stationary case. Even when considering
that noise is white and stationary, but speech is non-stationary, re-
sults are better as it can be observed from figure 3. Results become
even better when stationary colored noise model is used, figure 4.

However, the best results are obtained when both speech and
colored noise, are considered non-stationary, with intensities esti-
mated according to the procedures of the previous section; average
improvement is 7.1 dB, with more than 8 dB for signals with initial
SNR 2 [15; 25] dB, figure 5.

All the above mentioned results are contained in Table 1 which
gives an overview of average SNR improvements that can be ob-
tained with Kalman filtering.

Speech Noise Noise Avg. SNR
int. Q int. R type impr. [dB]
stat. stat. colored 0.53

non-stat. stat. white 1.87
non-stat. stat. colored 2.3
non-stat. non-stat. colored 7.14

Table 1: Average SNR improvement after Kalman filtering
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Figure 3: SNR improvement for non-stationary Kalman filtering of
white noise
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Figure 4: SNR improvement for non-stationary Kalman filtering of
stationary colored noise
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Figure 5: SNR improvement for non-stationary Kalman filtering of
non-stationary colored noise

6. CONCLUSIONS

The paper shows that non-stationary Kalman filtering is a good tool
for improving the SNR for speechsignals corrupted by non-stationary
colored noise. As it has already been mentioned, best results are
achieved when both speech, and colored noise are modeled as non-
stationary signals, SNR being improved with an average of 7.1 dB.

The paper also shows that end-point detection is improved; the
end-point detector applied on the filtered signal gives more accu-
rate results than on the original signal.
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