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ABSTRACT

Few fast statistical signal processing algorithms exist for large prob-
lems involving non-stationary processes and irregular measure-
ments. A recently introduced class of multiscale autoregressive
models indexed by trees admits signal processing algorithms which
can efficiently deal with problems of this type. In this paper we
provide a novel and efficient algorithm for translating any second-
order prior model to a multiscale autoregressive prior model so
that these efficient signal processing algorithms may be applied.

1. INTRODUCTION

Large statistical signal processing problems require fast algorithms.
Yet the most widely used fast algorithms—for instance, those based
on the fast Fourier transform or the wavelet transform—are ap-
plicable to a very restricted range of problems. For large prob-
lems involving non-stationary processes with correlations at many
time-scales and for which sparse, non-local data corrupted by non-
stationary measurement noise are available, few fast algorithms
exist. Further complicating the signal processing challenge, there
is a need in many applications to fuse data which represent mea-
surements at different scales.

This paper builds on a recently introduced framework for mul-
tiscale signal processing which addresses all of the aforementioned
challenges. Thismultiscale autoregressive(MAR) framework has
already seen successful application in a variety of signal process-
ing contexts [4–6] and is a generalization of the standard discrete-
time autoregressive (AR) framework. The MAR framework ad-
mits fast sample path generation, fast likelihood calculation [8],
and fast linear least squares estimation [3]. The estimator has com-
putational complexity linear in problem size and is a generalization
of the Kalman filter and Rauch-Tung-Striebel smoother. As such,
it provides estimation error statistics with no additional computa-
tion beyond what is needed to compute the estimates themselves.

As in the AR setting, the challenge in applying the MAR frame-
work is building an appropriate model. This is thestochastic re-
alization problemone variant of which will be explored in this
paper. More specifically, the contribution of this paper is a compu-
tationally efficient and completely general algorithm for mapping
any second-order prior model to a MAR prior model. Once such
a MAR model is in hand, efficient estimation, sample path gener-
ation, or likelihood calculation may be immediately performed.
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Figure 1: Nodes�
 is the parent of nodes while s�1; s�2 are its
children. Leaf nodes (in the box) represent the finest scale; the root
node represents the coarsest scale.

This multiscale stochastic realization problem has been ex-
plored before [4, 7]. The work in [7] is based on a novel appli-
cation of canonical correlations analysis which is a standard tool
employed in the AR context [1,2]. One drawback is that canonical
correlations analysis requires the singular value decomposition of
large covariance matrices. Consequently, the realization algorithm
developed in [7] is quartic in problem size.

The approach in [4] is based on that in [7] but applied to the
special case of self-similar processes with independent increments
(e.g., fractional Brownian motions). What is shown in [4] is that
the self-similarity and independent increments properties can be
exploited to circumvent much of the computational effort required
by the method of [7]. The resulting algorithm is cubic in problem
size and is only applicable to this restricted class of processes. In
contrast to the methods of [4, 7] our approach is only quadratic in
problem size and, unlike the approach of [4], is completely gen-
eral.

In Section 2 we review the MAR framework and state the
stochastic realization problem. In Section 3 we define the concept
of an internal process which, in turn, provides a convenient param-
eterization for the realization problem. In Section 4 we describe
the computational engine of our realization procedure and contrast
it with canonical correlations analysis. Our realization algorithm
is described in Section 5. Examples are provided in Section 6 and
conclusions and extensions are discussed in Section 7.

2. THE MAR FRAMEWORK AND STOCHASTIC
REALIZATION PROBLEM

MAR processes are indexed by trees. While they may be defined
on any tree, for our purposes dyadic trees will suffice (Figure 1).
Let S be the set of nodes of a dyadic tree where0 2 S is the root
node. We denote bys�
 the parent node ofs and bys�1, s�2 the
left and right child ofs, respectively. There is a natural notion of



scale associated withS. The root node corresponds to the coarsest
scale (scale zero) while the leaf nodes comprise the finest scale
(scaleM ). More generally, scalen consists of the nodes in the set
fs 2 S j s�
n = 0g.

A zero-mean MAR process1 x(�) is autoregressive in scale:

x(s) = A(s)x(s�
) + w(s) (1)

wherew(�) is a zero-mean white processes with auto-covariance
Q(s) and is uncorrelated withx(0). The objectx(s) is referred
to as thestateat nodes because, in analogy to the concept of
state for AR time-series, conditioned onx(s) the sub-processes
which are indexed by nodes which are separated bys are mutually
conditionally uncorrelated. For instance, in the case depicted in
Figure 1, conditioned onx(s), the three sub-processesx(s�1),
x(s�2), andfx(t) j t 6= s�1; s�2; sg are mutually conditionally
uncorrelated. Hereafter we call this property theMarkov property.

The second-order statistics of the root node state are2 x(0) �
(0; Px(0)). The measurement equation associated with the MAR
framework is

y(s) = C(s)x(s) + v(s) (2)

wherev(s) is zero-mean white noise with auto-covarianceR(s)
and is uncorrelated withx(�) andw(�).

The preceding parameterization implicitly provides a complete
joint second-order characterization ofx(�) andy(�). In particular,
the second-order statistics ofx(�) restricted to the finest scale (M )
are implicitly determined byA(�),Q(�) andPx(0). We will denote
the sub-process ofx(�) restricted to the finest scale byxM . The
covariance ofxM will be denoted asPM .

The stochastic realization problem addressed in this paper is
the following. Consider a fine-scale signalf � (0; Pf ). How can
we choose MAR parametersA(�),Q(�) andPx(0) so that the finest
scale of the MAR process,xM , has covariancePM which matches
or approximates (in some sense to be made precise)Pf?

3. INTERNAL MAR PROCESSES

There is a convenient parameterization for the realization problem
based on the concept of aninternal process. An internal process
is one for which the state at each nodes is a linear function of the
finest scale processxM :

x(s) =WsxM ; 8s 2 S : (3)

The matricesWs are calledinternal matrices. If all the in-
ternal matrices are specified, the realization problem is solved ex-
actly (i.e., withPM � Pf ) as follows. First, explicitly enforcing
PM � Pf and using (3) we get that

Px(s)
4

= E[x(s)x(s)T ] = WsPMW T
s =WsPfW

T
s ; (4)

Px(s)x(s�
)
4

= E[x(s)x(s�
)T ] =WsPMW
T
s�
 =WsPfW

T
s�
 : (5)

Next, recognizing that the first term of (1) is the linear least squares
estimate ofx(s) based onx(s�
) and the second term is the esti-
mation error it follows that

1To handle a non-zero mean we simply consider the deviation of the
process from its mean.

2The notationz � (mz ; Pz) means that the random vectorz has mean
vectormz and covariance matrixPz.

A(s) = Px(s)x(s�
)P
�1
x(s�
) ; (6)

Q(s) = Px(s) � Px(s)x(s�
)P
�1
x(s�
)P

T
x(s)x(s�
) : (7)

Therefore, the remaining step is to find the internal matrices.
This is a challenging problem for two reasons. First, there is often
a desire for a reduced order realization, i.e., a realization for which
the state dimensions are no larger than some integerd. The reason
for imposing such a constraint is that the MAR estimator and like-
lihood calculator have computational complexityO(Nd3)—linear
in N , the length ofxM and cubic in the maximum state dimen-
sion,d. And sample path generation has complexityO(Nd2). Of
course, if the state dimensions are constrained, one cannot expect
PM � Pf . There will be some degree of approximation. There-
fore, one would like to find internal matrices which prioritize the
information of the state so that it is clear what information is least
important and can be thrown out with minimal corruption inPM
(i.e., keeping the degree to whichPM approximatesPf small).

The second challenge in finding internal matrices is that they
are coupled. While this assertion can be made precise it is not hard
to see intuitively why it is so. A state defined asx(s) = WsxM
carries some information aboutxM given by the row-space ofWs.
This information is passed down toxM as described by (1). If the
information retained at nodes which descend froms do not include
that retained at nodes thenx(s) 6= WsxM . When this happens
we say that there is a loss ofinternal consistency.

A necessary and sufficient condition to maintain internal con-
sistency is that each statex(s) is a linear function of its children
statesx(s�1), x(s�2). This fact follows from properties of linear
least squares estimation and the Markov property of MAR pro-
cesses. In our realization algorithm specified in Section 5 we will
maintain internal consistency by enforcing this condition as we
build internal matrices. We note that the realization approach de-
veloped in [7] is also based on the concept of an internal process
but doesnot maintain internal consistency. This is one of two sig-
nificant ways in which our approach differs from that of [7]. The
second significant way in which our approach differs from that
of [7] will be made clear in the next section.

4. DECORRELATING RANDOM VECTORS

The heart of the realization problem is finding for eachs 2 S the
internal matrixWs so that (1) the statex(s) =WsxM contains the
appropriate decorrelating information as dictated by the Markov
property, (2) the number of rows ofWs is minimal, and (3) the
information is prioritized so that it is clear which rows ofWs are
least important and can be discarded if a reduced order realization
is required. We will address these three challenges by considering
a pair-wise decorrelation problem which is then easily generalized
for the problem of decorrelating three (or more) random vectors.

Let z = [zT1 z
T
2 ]

T have zero-mean wherezi has lengthni and
n1 � n2. Also,

Pi
4

= E[ziz
T
i ] and P12

4

= E[z1z
T
2 ] : (8)

LetMr be the set ofr�n1 matrices. Canonical correlations anal-
ysis provides the matrixV 2 Mr such that conditioned onV z1
the vectorsz1 and z2 are maximally conditionally decorrelated.
SinceV is restricted to haver rows, we cannot expect thatz1 and
z2 are exactly conditionally decorrelated byV z1. What canoni-
cal correlations analysis provides is the best possible decorrelating
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Figure 2: Figure (a) isPf , the covariance matrix for 64 samples of fBm(0.3) on(0; 1]. The other figures illustratejPf �PM j wherePM is
obtained from: (b) the method of [7]; (c) our approach. In both cases the maximum state dimension is four.

information subject to this row constraint. The drawback to this
approach, which forms the engine of the method of [7], is that it is
computationally intensive, requiringO(n32) operations.

Our approach3 instead considers the mean square estimation
error (MSEE) in estimatingz2 based on ar linear functions of
z1. The element ofMr which minimizes the MSEE is given
by the firstr rows of the matrixUTP

�1=2
1 whereU�UT is the

eigen-decomposition ofP�1=21 P12P
T
12P

�T=2
1 with the eigenval-

ues forming the diagonal of� in decreasing order from upper-
left to lower-right. The computational complexity of computing
UTP

�1=2
1 isO(n2). We will show in Section 5 that, in the context

of the MAR realization problem, our MSEE approach provides
decorrelating information comparable in quality to that provided
by canonical correlations and with substantial savings in computa-
tional complexity.

Regardless of which method is used—canonical correlations
or our MSEE-based approach—it can be generalized to the case of
three random vectors (a case we will encounter in the realization
problem on dyadic trees). To mutually conditionally decorrelate
the three sub-vectors ofz = [zT1 z

T
2 z

T
3 ]

T we simply consider the
two pair-wise problems of finding the best4 V1z1 to conditionally
decorrelatez1 and [zT2 z

T
3 ]

T and the bestV2z2 to conditionally
decorrelatez2 and[zT1 z

T
3 ]

T . The stacked vector�
V1z1
V2z2

�
(9)

will exactly conditionally decorrelatez1, z2, andz3 if no restric-
tions on the number of rows ofV1 andV2 are applied. Approxi-
mate conditional decorrelation is obtained under a row constraint.

5. AN EFFICIENT REALIZATION ALGORITHM

It turns out that for internally consistent processes the Markov
property is equivalent to the following:x(s) at scalen 6=M con-
ditionally decorrelatesx(s�1),x(s�2), andfx(t) j t is at scalen+
1; t 6= s�1; s�2g. I.e., thisscale-recursive Markov propertyis
equivalent to the Markov property defined in Section 2 for inter-
nally consistent processes.

In our realization approach we ensure internal consistency by
explicitly forcingx(s) to be a linear function of its children states.

3A similar approach applied to the classical stationary AR stochastic
realization problem is discussed in [2].

4“Best” is defined by the approach used. Canonical correlations mini-
mizes correlation coefficients while our approach minimizes MSEE.

Therefore, it is sufficient to appeal to the simpler scale-recursive
Markov property rather than to the Markov property. The algo-
rithm proceeds as follows. For each scalen = M � 1;M �
2; : : : ; 0 and for each nodes at scalen do the following:

1. For eachi = 1; 2, find the vectorVs�i
x(s�i) which min-

imizes the MSEE in estimating all the other states at scale
n + 1 from Vs�i

x(s�i). This is a pair-wise problem as
described in Section 4.

2. Form the stacked vector�
Vs�1x(s�1)
Vs�2x(s�2)

�
: (10)

This stacked vector solves the three-way problem involving
x(s�1), x(s�2) and all the other states at scalen + 1 as
described previously.

3. If the resulting state dimension is too large, delete the ap-
propriate number of rows of theVs�i

matrices. Because
the rows ofVs�i

are in priority order, it is a simple matter
to decide which information is least important.

Together thefVs�i
g define the internal matrices. Notice that

in the above algorithm each node is visited once and the complex-
ity of the calculation at each node isO(N) whereN is the size
of f . Therefore, the overall complexity isO(N2)—constant com-
putational complexity per element of the covariance matrix we are
trying to realize,Pf .

6. EXAMPLES

In our first example we compare our approach to that described
in [7] for the case wheref consists of samples of fractional Brow-
nian motion (as defined in [9]) with Hurst parameterH = 0:3
(denoted by fBm(0.3)). Figure 2(a) illustratesPf , the covariance
matrix for 64 equally spaced samples of fBm(0.3) on the interval
(0; 1]. Figure 2(b) illustratesjPf �PM j wherej � j is element-wise
absolute value andPM is obtained by the method described in [7]
based on canonical correlations. Figure 2(c) illustratesjPf �PM j
wherePM is obtained by our MSEE-based method. For both cases
the maximum state dimension is four.

The main message of Figure 2 is that the two methods yield ap-
proximations toPf of comparable quality. However, our approach
is O(N2) while that of [7] isO(N4). Moreover, our approach
yields an internally consistent model. While space constraints pre-
vent us from providing additional examples, the one depicted in
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Figure 3: Figure (a) is a sample path ofxM generated by our
MSEE-based model of fBm(0.3). Figure (b) are noisy measure-
ments taken over the first and last third of the process in (a). The
solid line of (c) are the MAR estimates which coincide with the
optimal estimates based on the true fBm(0.3) statistics. The dotted
lines indicate one standard deviation errors.

Figure 2 is typical of all the examples we have tried. In all cases
our approach and that of [7] yield comparable results.5

In our second example we illustrate the problem of estimat-
ing an fBm(0.3) process from irregular measurements corrupted by
non-stationary noise. We emphasize that this is a problem which
cannotbe handled with fast transform techniques due to the non-
stationarity of the process to be estimated and the process noise
and the irregularity of the measurements. Figure 3(a) is a sam-
ple path ofxM based on our MSEE-based realization of fBm(0.3)
from the previous example. Figure 3(b) illustrates noisy irregu-
lar measurements of figure (a). Measurements are taken over the
first and last third of the process. No measurements are available
over the middle third. The white measurement noise has variance
0.1 over the first third sub-interval and 0.5 over the last third sub-
interval. Figure 3(c) shows the output of the MAR estimator [3]
(solid line) with one-standard-deviation error bars (dotted lines).
The optimal estimate based on the exact fBm(0.3) statistics (rather
than our approximate model of them) is also plotted in figure (c).
However it is not distinguishable from the MAR estimate since the
two nearly coincide. This demonstrates that the degree to which
our MAR model deviates from the exact model is statistically ir-
relevant.

5We have tried fBm(H) for 0 < H < 1, discrete fractional Gaus-
sian noises, fractionally differenced Gaussian noises, reciprocal processes
of several orders, a damped sinusoidal covariance function, and randomly
chosen covariance matrices.

7. CONCLUSION

The contribution of this paper has been to provide a novel and
computationally efficient realization algorithm for a recently in-
troduced class of multiscale models. Our algorithm is quadratic in
problem size while the only other known general purpose realiza-
tion algorithm is quartic in problem size. In addition, our realized
models are internally consistent.

It is worth emphasizing that the approach discussed here gen-
eralizes easily to a MAR process defined on an arbitrary tree (ir-
regular or symmetric). In particular, we have also applied our ap-
proach to realization of quad-tree-based multiscale stochastic im-
age models with great success. It is in this context that our ap-
proach, while fast, is still far too slow to handle large problems of
interest (say,1024� 1024 images). Our future work will focus on
approximate algorithms which are faster (O(N) orO(N log(N)),
say).

8. REFERENCES

[1] H. Akaike. Markovian representation of stochastic processes
by canonical variables.SIAM Journal of Control, 13(1):162–
173, January 1975.

[2] K. S. Arun and S. Y. Kung. Balanced approximation of
stochastic systems.SIAM Journal of Matrix Analysis and Ap-
plications, 11(1):42–68, January 1990.

[3] Kenneth C. Chou, Alan S. Willsky, and Albert Benveniste.
Multiscale recursive estimation, data fusion, and regulariza-
tion. IEEE Transactions on Automatic Control, 39(3):464–
478, March 1994.

[4] Michael M. Daniel. Multiresolution statistical modeling with
application to modeling groundwater flow. PhD thesis, Mas-
sachusetts Institute of Technology, February 1997.

[5] Paul W. Fieguth and Alan S. Willsky. Fractal estimation us-
ing models on multiscale trees.IEEE Transactions on Signal
Processing, 44(5):1297–1300, May 1996.

[6] T. T. Ho, P. W. Fieguth, and A. S. Willsky. Multiresolu-
tion stochastic models for the efficient solution of large-scale
space-time estimation problems. InIEEE International Con-
ference on Acoustics, Speech, and Signal Processing Con-
ference Proceedings, volume 6, pages 3097–3100, Atlanta,
Georgia, USA, May 1996.

[7] W. W. Irving, W. C. Karl, and A. S. Willsky. A theory for
multiscale stochastic realization. InProceedings of the 33rd
IEEE Conference on Decision and Control, volume 1, pages
655–62, Lake Buena Vista, Florida, USA, December 1994.

[8] Mark R. Luettgen and Alan S. Willsky. Likelihood calculation
for a class of multiscale stochastic models, with application to
texture discrimination.IEEE Transactions on Image Process-
ing, 4(2):194–207, February 1995.

[9] B. B. Mandelbrot and J. W. Van Ness. Fractional Brownian
motions, fractional noises and applications.SIAM Review,
10:422–437, 1968.


