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1 INTRODUCTION

In this paper we describe a new testbed for developing
speech recognition algorithms - the ARPA-sponsored
VoiceMail transcription task, analogus to other tasks
such as the Switchboard, CallHome [1] and the Hub
4 tasks [2] which are currently used by speech recog-
nition researchers. As the name indicates, the task
involves the transcription of voicemail conversations.
Voicemail represents a very large volume of real-world
speech data, which is however not particularly well
represented in existing databases. For instance, the
Switchboard and CallHome databases contain telephone

conversations between two humans, representing telephone-

bandwidth spontaneous speech; the Hub 4 database
contains radio broadcasts which represents different
kinds of speech data such as spontaneous speech from
a well-trained speaker, conversations between two hu-
mans possibly over the telephone, etc. The Voicemail
database on the other hand also represents telephone
bandwidth spontaneous speech, however the difference
with respect to the Switchboard and CallHome tasks
is that the interaction is not between two humans, but
rather between a human and a machine- consequently,
the speech is expected to be a little more formal in its
nature, without the problems of cross-talk, barge-in
etc. This eliminates some of the variables and provides
more controlled conditions enabling one to concentrate
on the aspects of spontaneous speech and effects of the
telephone channel. In this paper, we will describe the
modality of collection of the speech data, and some al-
gorithmic techniques that were devised based on this
data. We will also describe the initial results of tran-
scription performance on this task.

2 DATA COLLECTION

The data was collected at various IBM sites in the US.
The method that was used to collect the data was as

follows: volunteers from the site would be asked to do-
nate their non-confidential voicemail messages to the
database in return for some incentives. However for
privacy reasons, it was necessary to inform the person
leaving the message (the caller) that the data could
be used for research purposes, so the volunteers were
required to add a sentence to their outgoing message
of the form ’Your voicemail data may also be used
for commercial research purposes in developing speech
recognition algorithms. If you do not want your data
to be used, please say so in your message.” Subse-
quently, if the caller did not specify any objection to
his/her data being used, and if the volunteer felt that
the message did not contain any confidential informa-
tion, he/she would forward the message to a telephone
extension which was set up for the purpose of collect-
ing these messages.

At the time this paper was written, the database
comprised of around 10 hours of data collected from
volunteers at the IBM T. J. Watson Research Center
in Yorktown Heights. Some of the characteristics of
the voicemail data that we collected are as follows:

e The data contains both long-distance and local calls.
e BEach voicemail message typically has a click at the
beginning or end of the message arising from the caller
hanging up.

e The data represents extremely spontaneous speech.
One of the initial assumptions prior to collecting the
data was that as the caller would be leaving a message
on a machine, the speech would be relatively well artic-
ulated, but more often than not, there are a lot of dis-
fluencies in the speech, and often the rate of speaking
1s also quite high, leading to cross-word co-articulation
effects.

We will next give a detailed description of the speech
recognition system, and the new algorithms that were
developed to transcribe the voicemail data.

OWe would like to thank Dr. Salim Roukos, Dr. P. S.

Gopalakrishnan, and Dr. David Nahamoo for their useful com-



3 SYSTEM OVERVIEW

We will first briefly describe the IBM large-vocabulary
speech recognition system. Essential aspects of the
system used in the experiments here have been de-
scribed earlier [3]; however, we will summarize the
main features here :

The features used are 13-dimensional cepstra and
their first and second differences, and a feature vec-
tor is extracted every 10 msec from the 8KHz sampled
voicemail data. Words are represented as sequences
of phones. Each phone is further divided into 3 sub-
phonetic units which correspond roughly to the be-
ginning, middle, and end of each phone. The sys-
tem uses context-dependent HMM acoustic models for
these sub-phonetic units. For each sub-phonetic unit a
decision tree is constructed from the training data [3].
Each leaf of the tree corresponds to a different set of
contexts. The acoustic observations that characterize
the training data at each leaf are modeled as a mix-
ture of gaussian pdf’s, with diagonal covariance matri-
ces. The systems used in this paper had approximately
2700 leaves, and anywhere from 17000 to 170000 gaus-
sians. The system also uses an envelope-search algo-
rithm [3] to hypothesize a sequence of words corre-
sponding to the utterance. A simple N-gram (bigram
or trigram) is used to compute the language model
probabilities.

4 ACOUSTIC MODELS

In this section, we will describe the construction of
the acoustic models for this task. The first step in the
construction of the acoustic models is the construc-
tion of the decision trees to model context-dependent
variations of the sub-phonetic units. The goal here
1s to model variations in pronunciation arising from
context, however, as the voicemail data contains data
from different environments, use of this data during
the tree growing process may result in trees that try
to isolate the environment rather than pronunciation
variations. Further, the amount of voicemail data cur-
rently available is only around 10 hours. Consequently,
we decided to bandlimit the Wall Street Journal SI-284
primary microphone data (WSJ-P) to 200-3400 Hz us-
ing a linear-phase 200 tap Lerner filter, and used this
data to construct the decision trees and the gaussians
modelling the leaves of the tree. The parameters of the
acoustic model were then re-estimated via the E-M al-
gorithm using the 10 hours of voicemail data. This
represented our baseline system.

ments and support.

Further, in order to model the clicks in the voice-
mail messages, we decided to augment the phone al-
phabet by adding a ’click’ phone. Further, we also
added a ’mumble’ phone to model inarticulate seg-
ments of the messages. Both the ’click’ and ’mumble’
phones were modelled with 3-state HMM’s just as for
the other phones.

4.1 Clean-up of transcriptions

The initial transcription that we started off for the
10 hours of voicemail data were not very clean, and
had a fair number of transcription errors. As it would
have been impractical to verify all these transcriptions
manually, we devised an automatic scheme to identify
possible transcription errors. This flagged around 1
% of the data, and we then corrected these transcrip-
tions manually. The scheme was as follows: we first
viterbi-aligned the voicemail data against the initial
transcriptions using the baseline model. Subsequently,
we computed the log-likelihood of each instance of a
phone in the training data, conditioned on the align-
ment, and computed the average per-frame likelihood
by normalizing by the number of frames that aligned
to the phone. Then, we computed a histogram of these
per-frame log-likelihood scores for each phone over all
the training data. Next we went through the training
data again and identified those instances of phones
with per-frame likelihoods less than three 3o below
the mean per-frame likelihood for that phone (where
o represents the standard deviation of the score), and
tagged the region of the acoustic corresponding to that
instance of the phone as a possible transcription error.
Finally, we listened to the tagged acoustic segments
and manually corrected the transcriptions. Some ex-
amples of such corrections were
(i) the baseform for the name IRA was initially incor-
rectly specified as AY AA R EY (the correct baseform
was AY R AX), and this was flagged as an error
(ii) there were several instances where disfluencies such
as 'UH’ and UM’ had not been transcribed, and the
technique flagged a number of these errors

The main objective in attempting this clean-up of
the transcriptions was to obtain sharper acoustic mod-
els, and as the experimental results will show, this did
help the error performance.

4.2 Compound words

An additional observation arising from the tagged seg-
ments of the acoustic data was that crossword co-
articulation was very common in this data because of
the casual nature of the speech and the fast speaking
rate. For instance, the phrase ’going to take’ would
often be pronounced as ’gontake = G OW N T AE



KD’, in which case at least one of the phones in the
phonetic representation for ’going to take’ would be
flagged. This was clearly not a transcription error,
but we needed some mechanism to model such cross-
word co-articulation effects (degemination, palatiza-
tion etc.). One possibility is to use phonetic rules
[4], however, for our initial experiments, we chose to
model such effects by constructing compound words.
For instance going-to-take would be a compound word,
with several possible baseform representations, one of
which would be ’G OW N T AE KD’. We selected
these compound words based on the tagged segments
of the acoustic training data. Some examples of the

compound words and their pronunciations is given in
Table I 1.

Table 1
CAN —-WE K AX W IY
FOR-YOU F AXY UW
GIVE-ME G IH M IY
GOOD - MORNING G UH M AA N IX N
IT-WAS IX W AX Z
SO —IF S OW F
TO-YOU CHY UW
TRYING - TO T R AY N AX
WANT —TO W AA N AX
YOU —CAN Y UW N

The use of these compound words serves a dual
purpose. Firstly, they enable the modelling of cross-
word co-articulation effects. Secondly, it is generally
the case that decoding errors are more common in
shorter words, hence, as the compound words have
relatively long baseforms, there are fewer errors in the
compound words. We decided to extend the second
plece of reasoning above and apply it to model com-
monly occurring phrases in the voicemail data. Hence,
we constructed compound words of the form ’give-
me-a-call’; ’thank-you’, ’thanks-a-lot’; ’'when-you-get-
a-chance’ etc. The use of these compound words helped
bring down the error rate as shown in the section on
experimental results.

4.3 Model-complexity Adaptation

As mentioned earlier, we model leaves in our system
with mixtures of gaussians. In general, ad-hoc rules
are used to determine the number of mixture compo-
nents that will be used to model a particular leaf - for
eg., the number of components is made proportional
to the amount of data, subject to a maximum num-
ber. This choice of the number of components may

1We note that a similar technique was used in [5] to obtain
performance improvements on the Switchboard task.

not necessarily provide the best classification perfor-
mance - consequently, we introduced a discriminant
measure to choose the number of mixture components
in a more optimal manner. The details of this algo-
rithm are given elsewhere [6], so we will only summa-
rize it briefly here.

The essence of the algorithm is to start with a base-
line system, and evaluate how well the gaussian mix-
ture model for a leaf models the data for that leaf.
This is done by computing the posterior probability of
correct classification of the data for that leaf. If this
probability is low, this implies that the model for the
leaf does not match the data for the leaf very well;
hence, the resolution of the model for the leaf is in-
creased by adding more components to its model. We
experimented with two systems that were designed in
this manner, the first one with 23K gaussians, and the
second one with 32K gaussians. Both these systems
were subsequently retrained on the 10 hours of voice-
mail data. The experimental results show that this
manner of adjusting the complexity of the model does
provide performance improvements.

4.4 MLLR Adaptation

Finally, we used MLLR adaptation [7] to adapt the
acoustic models. We adapted the acoustic models in-
dependently for every voicemail message in the test
set, starting from the initial transcription of the mes-
sage produced by the speaker-independent acoustic
model (unsupervised sentence-based adaptation).

5 LANGUAGE MODEL

The transcription of the 10 hours of voicemail data
contained approximately 100K words. This was ade-
quate to build a bigram language model for the voice-
mail task. In addition, we attempted to make use of
the 2M words of data from the Switchboard database
by pooling the voicemail transcription data with the
Switchboard data in a proportion of 30:1, and building
a trigram from the combined data. Furthermore, in an
attempt to use the small amount of voicemail data par-
simoniously, we attempted to use word-classes. The
classes were hand-selected based on semantics and/or
transcription inconsistencies, and the trigram model
used was :

p(wslwawr) = p(es|eaer)p(wales) (1)

where ¢; is the class of word ¢ and p(w;|c;) is the rela-
tive frequency of word 2 in its class, smoothed against
a flat model. Some specimen classes are shown in Ta-

ble II.



Table II
_BYE BYE - BYE,BYE — NOW etc.
_COUNTRY CHINA,FRANCE etc.
_DIGIT ONE, TWO etc.
GREETING HELLO,HI

LASTNAME HORN,NAHAMOO etc.
THANKS

GRACIAS, THANK —YOU etec.

6 EXPERIMENTAL RESULTS

The test data was 43 messages also collected from the
same IBM site. The size of the vocabulary was 6K
words, and the test data had an out-of-vocabulary
rate of 4.5%. The perplexity of the test data using
the bigram LM was 196. The results of several ex-
periments are summarized in Table II. The conditions
corresponding to each experiment are summarized be-
low. Unless otherwise indicated, all experiments used
a bigram language model.

(i) The acoustic models corresponded to the baseline
with 17K gaussians.

(ii) The acoustic models corresponded to the baseline
with 81K gaussians.

(iii) Compound words were added to the vocabulary,
and the acoustic model of (i) with 17K gaussians was
used.

(iv) Compound words were added to the vocabulary,
and the acoustic model of (ii) with 81K gaussians was
used.

(v) The 17K baseline acoustic model was retrained
with cleaned-up transcriptions, and used along with
compound words.

(vi) The 81K baseline acoustic model was retrained
with cleaned-up transcriptions, and used along with
compound words.

(vii) A model-complexity-adapted acoustic model was
designed with 23K gaussians. Compound words were
used in the vocabulary.

(viii) A model-complexity-adapted acoustic model was
designed with 32K gaussians. Compound words were
used in the vocabulary.

(ix) The acoustic model of (viii) was used along with
a trigram language model.

(x) The acoustic model of (viii) was used along with a
class-based trigram language model.

(xi) The acoustic models of (viii) were re-estimated
using MLLR adaptation in unsupervised mode, and
on a per-sentence basis, and the adapted models were
used with the class-based trigram language model.

Table II
Ezperiment # | Word Error rate (%) |

Baseline
1 57.6
7 56.24
Compound — words
11 52.87
w 51.46
Cleaned — up transcriptions
v 51.66
vi 49.75
Model — complexity adaptation
V18 50.65
V21t 48.44
Trigram language model
iz 48.19
z 46.88
MLLR adapted models
| zi | 43.86 |
REFERENCES

[1] Proceedings of LVCSR, Workshop, Oct 1996, Mar-
itime Institure of T'dchnology.

[2] Proceedings of ARPA Speech and Natural Lan-
guage Workshop, 1995, Morgan Kaufman Pub-
lishers.

[3] L. R. Bahl et al., ”Performance of the IBM large
vocabulary continuous speech recognition system
on the ARPA Wall Street Journal task”, Proceed-
ings of the ICASSP, pp 41-44, 1995.

[4] E. P. Giachin, A. E. Rosenberg and C. H.
Lee, ”Word juncture modeling using phonological
rules for HMM-based continuous speech recogni-

tion”, Computer, Speech and Language, pp 155-
168, Academic Press, 1991.

[5] M. Finke and A. Waibel, ”Speaking mode depen-
dent pronunciation modeling in large vocabulary
conversational speech recognition”, Proceedings

of EUROSPEECH 1997, vol. 5, pp 2379-2382.
[6] L. R. Bahl and M. Padmanabhan, ”A discrimi-

nant measure for model complexity adaptation”,

submitted to ICASSP-98.

[7] C. J. Legetter and P. C. Woodland, ”Maximum
Likelihood Linear Regression for Speaker Adap-
tation of Continuous density HMM’s”, Computer
Speech and Language, vol. 9, no. 2, pp 171-186.



