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ABSTRACT
We present a new feature-based method for estimating the
speaking rate by detecting vowels in continuous speech. The
features used are the modified loudness and the zerocrossing
rate which are both calculated in the standard preprocessing
unit of our speech recognition system. As vowels in general
correspond to syllable nuclei, the feature-based vowel rate is
comparable to an estimate of the lexically-based syllable rate.
The vowel detector presented is tested on the spontaneously
spoken German Verbmobil task and is evaluated using
manually transcribed data. The lowest vowel error rate
(including insertions) on the defined test set is 22,72% on
average over all vowels. Additionally correlation coefficients
between our estimates and reference rates are calculated. These
coefficients reach up to 0,796 and therefore are comparable to
those for lexically-based measures (like the phone rate) on other
tasks. The accuracy is sufficient to use our measurement for
speaking rate adaptation.

1. INTRODUCTION
A main problem for speaker independent automatic speech
recognition systems is the variability of the speech signal. The
same sequence of words uttered by different speakers or even
uttered several times by one speaker never results in identical
speech signals.
Recent research has shown efficient methods for compensating
the inter-speaker variability by either adaptation to the
individual speaker’s characteristics (e.g. MAP and MLLR
related approaches) or by speaker normalization of the speech
signal (e.g. vocal tract normalization).
Various reasons - among those the rate of speech (ROS) should
be mentioned as very important - can be held responsible for
the effect of intra-speaker variability of the speech signal.
Increased coarticulation effects as well as the use of different
pronunciation variants can be observed at higher speech rates.
In first experiments on the German Verbmobil database we
were able to confirm the results of [3] and [4], which showed a
degradation in performance of automatic speech recognition
systems for exceptionally fast or slowly spoken sentences. In
figure 1 the word error rates on the Verbmobil crossvalidation
set 1996 are shown (the set was divided into 12 bins according
to the speech rate measured for each utterance and then the
error rates for each bin were determined).
Lately some approaches have been made to compensate for the
effects of different speaking rates. In [2], [3] and [4] changes of
the HMM state transition probabilities improved the perfor-
mance of the systems used as well as changes of a neural net
(MLP) phonetic probability estimator in [2] and [3].
For being able to apply such compensation techniques either the
speech rate must be determined a priori or at least an estimate

of the speech rate must be available. Therefore our work
described in this paper concentrates on a new approach for
robust online estimation of the ROS.
Good and robust measures of the speech rate can be found when
counting phonetic units after the recognition process [2].
However, for an online compensation of the ROS a recogniton
independent measure has to be found. The estimate of the ROS
should be derived concurrently to the recognition process in
order to be able to use the speech rate as an additional know-
ledge source to improve recognition results. For example in [5]
a MLP is applied for estimating the ROS and in [1] a simple
estimator of the speaking rate directly based on the speech
signal is presented, which uses the energy envelope of the
speech signal as the prominent feature.
Our new measure presented here is based on the detection of
vowels in the speech signal by utilizing a special feature, the
so-called „modified loudness“, and additionally the zero-
crossing rate. By this method the estimation of the ROS can be
performed simultaneously to the recognition process. Here we
investigated the efficiency of this ROS detector alone. Further-
more it should be mentioned that our method can easily be
combined with usual ROS measurements derived from
phoneme recognition results.

2. USING THE MODIFIED LOUDNESS
Vowels in general correspond to the syllable nuclei of speech
and counting vowels therefore should be strongly related to
counting syllables. Furthermore the sequence of vowels in a
spoken utterance roughly can be seen as the rhythm of speech.
Although our measure is based directly on the speech signal
(therefore no recognition system has to be used in advance and
no explicit reference to lexical units is required) it is implicitly
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Figure 1: Word error rates on the Verbmobil

crossvalidation set 1996



linked to a lexical unit, the syllable. Thus it is comparable to
lexically-based measures of the speech rate like the phone rate.
It is known from psychoacoustic experiments, that vowels in the
syllable nuclei are perceived „louder“ than the neighbouring
consonants. A suitable measure for this effect is the modified
loudness [7,8]. In contrast to the overall-loudness, it takes into
consideration that the main part of the energy of a vowel
concentrates on low frequencies whereas for the most
consonants the main part of the energy is located at higher
frequencies. The modified loudness Nm(t) is calculated as a
difference D(t) of the partial loudness functions Nu(t) and No(t)
(with ν measured in Bark):
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Each specific loudness function Nν(t) is defined on the Bark
scale giving the loudness within one critical band ν. The
modified loudness is computed for every frame (every 10ms) in
our standard acoustic preprocessing unit according to [6].
Figure 2a shows the modified loudness calculated by the
acoustic preprocessing unit of our standard HMM speech
recognition system [9] for each frame of the utterance ‘Spitze,
vielen Dank das paßt mir sehr gut, ja’. The values of the
modified loudness in vowel regions are clearly higher than in
consonant regions, thus a detection of maxima has to be done in
order to detect vowels.

3. DETECTION OF VOWELS
As one can see in figure 2a not every peak of the modified
loudness corresponds to a vowel. For detecting vowels the
modified loudness has to be smoothed over time in order to get
a kind of envelope of the modified loudness (see figure 2b).
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Figure 2: Modified loudness (a), smoothed modified loudness (b), zerocrossing rate (c)
 and manual transcription of the sentence g073a011 from Verbmobil CD1



This approach is comparable to [1] where the energy envelope
is determined. According to [7,8] a suitable lowpass can be
built by a series of k lowpass functions with rectangular
impulse response. Increasing k leads to a gaussian impulse
response (see figure 3).
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Figure 3: Impulse response of the lowpass for smoothing the
modified loudness

3.1. Optimal smoothing function

In the first experiment our aim was to optimize the lowpass
function in order to achieve good vowel detection results. As
reference for our maximum detector we used a manually
transcribed subset of the German Verbmobil database. This
subset was divided half and half into a training set and a test set
with 694/693 sentences and 17040/18539 vowels respectively.
As some syllable nuclei consist of vowel clusters instead of
single vowels an inventory of vowels, diphthongs and vowel
clusters is defined which build the references for our detector
(see table 1).

a:, e:, i:, o:, u:, E:, 2:, y:, a, I, O, U, E, 9, Y, @, 6,
aI, aU, OY,

a:6, e:6, i:6, o:6, u:6, E:6, 2:6, y:6, a6, I6, O6, U6, E6, 96, Y6
Table 1: Inventory of vowels, diphthongs and vowel clusters

to be detected (in SAMPA)

Two different measures are used to evaluate our maximum
detector. First the vowel error rate (VER) is defined:

VER
hits insertions

vowels
= − −





⋅1 100[%],

where hits is the number of maxima, which match to a vowel,
insertions is the number of maxima, which do not correspond
to a vowel in the reference and vowels is the number of vowels
(and vowel clusters), which can be found in the reference
segmentations. As a second measure the correlation coefficient
between speech rates calculated from the reference
segmentations and speech rates derived from the maximum
detector are determined. The two rates are calculated for each
utterance using the following definition:

ROS
n
d

=  [vowels/sec],

where n is the number of vowels (detected or given in the
reference) and d is the duration of the utterance in seconds.
In some preliminary experiments we found out that the
steepness of the maxima is an important feature for the indica-
tion of insertions, i.e. maxima which do not correspond to a

vowel. In general only distinct maxima consistently correspond
to vowels whereas flat maxima can often be found in silence
regions. For this reason we introduced two additional para-
meters. The first one is the threshold t, below which the
smoothed modified loudness has to fall within a defined frame
range d (second parameter) on at least one side of the maximum
(see figure 4). This threshold is given as a percentage of the
value of the maximum.

Figure 4: Maximum detection:
the smoothed modified loudness must fall below the
threshold t on at least one side within the range d

In the last but one line of table 2 (threshold: ’none’) error rates
without using the threshold t are shown. Using the threshold
(table 2: t=0,73...0,93) results in significantly lower error rates.
A relative improvement between 8% and 18% can be achieved
for the different smoothing functions (k=4...9). The best
smoothing with a VER of about 25% can be found for k=6, k=7
or k=8. The corresponding cutoff frequencies of the lowpass
functions are 9,67 Hz, 8,98 Hz or 8,43 Hz respectively. This fits
quite good to the average syllable rate of 4,5 syllables/sec.

3.2. Additional feature for better detection
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Figure 5: Histograms of the zerocrossing rates
of hits and insertions

A closer look at figure 2a-c reveals that the zerocrossing rate
can be used to further reduce the vowel error rate. Maxima
within regions in which the zerocrossing rate is higher than a
defined threshold should be discarded in order to further reduce



insertion errors. The threshold to be used can be determined on
the training set. Therefore a histogram of the values of the
zerocrossing rate has to be built for both correctly detected
vowels (hits) and insertions. The optimal threshold can be
determined by evaluating the difference between the number of
additional errors, which occur by discarding correctly detected
maxima (figure 5: region 1) and the number of errors, which
can be avoided by discarding insertions (figure 5: region 2).
This (negative) difference has to be minimized in order to
improve the VER. Resulting error rates on the training set can
be seen in table 2 (rows with use of the zerocrossing rate are
marked with a ‘zc’). A further improvement of 5% to 8%

relatively can be achieved using the optimized threshold for the
different smoothing functions.
Finally in table 3 the vowel error rates for the test set (with use
of the zerocrossing rate) are shown. The best smoothing factors
can be found as k=6 and k=7, which are the same as on the
training set. Additionally for k=6 the correlation coefficient
reaches a maximum, too.

4. CONCLUSION
In this paper we have presented a new feature-based method for
estimating the speaking rate on the acoustic signal. The
smoothed modified loudness is used to detect vowels, and the
relation between vowels and syllable nuclei enables us to
compare our measure to the syllable rate, which is a lexically-
based measure. In experiments on the German Verbmobil
spontaneous speech database we achieved a vowel error rate of
22,72% on the defined test set. This result is quite encouraging
since the correlation to the actual speaking rate, derived from
manually transcribed data, is rather high (up to 0,796). Thus the
accuracy of our measurement is sufficient to use it for ROS
adaptation within the recognition module of our system.
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smoothing factor k
peak

threshold t
4 5 6 7 8 9

0,73 26,78 25,65
0,73 zc 24,61 23,83
0,75 26,97 25,6 25,13

0,75 zc 24,51 23,68 23,6
0,77 27,10 25,7 25,14 25,01 25,12 25,65

0,77 zc 24,5 23,66 23,51 23,63 24,03 24,67
0,79 27,29 25,83 25,11 24,98 25,13 25,52

0,79 zc 24,57 23,62 23,37 23,51 23,97 24,5
0,81 27,65 25,97 25,28 25,00 25,07 25,42

0,81 zc 24,63 23,6 23,41 23,45 23,84 24,35
0,83 27,99 26,26 25,48 25,11 25,19 25,42

0,83 zc 24,81 23,67 23,43 23,43 23,81 24,25
0,85 26,53 25,66 25,28 25,33 25,59

0,85 zc 23,8 23,44 23,47 23,81 24,27
0,87 26,02 25,55 25,56 25,65

0,87 zc 23,59 23,54 23,86 24,18
0,89 25,82 25,76 25,82

0,89 zc 23,57 23,85 24,12
0,91 26,29 26,07 26,00

0,91 zc 23,73 23,95 24,15
0,93 26,87 26,55 26,46

0,93 zc 23,96 24,1 24,31
none 32,69 30,21 28,87 28,1 27,82 27,69

none zc 26,97 25,36 24,67 24,42 24,58 24,75
Table 2: VER on the training set for different peak

thresholds with and without using the zerocrossing rate

smoothing
factor k

peak
threshold t

optimized
threshold zc
for zc-rate

error
rate

correlation
coefficient

4 0,77 0,42 23,75 0,781
5 0,81 0,42 23,26 0,792
6 0,79 0,42 22,72 0,796
7 0,83 0,44 22,73 0,792
8 0,85 0,47 23,28 0,787
9 0,89 0,43 23,7 0,778

Table 3: VER and correlation coefficients on the test set
with parameters optimized on the training set


