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ABSTRACT

Finding and identifying characteristic or meaningful im-
age sequences in a continuous video stream is a challeng-
ing task with many applications. This paper presents a new
and efficient approach to these temporal segmentation and
classification problems based on Hidden Markov Models
(HMMs). The basic principle consists in continuously ob-
serving the output scores of the HMMs at every time step.
Peaks, which appear in the individual HMM output scores,
allow to determine in an integral way which image sequence
occured at what time. The application of our method to the
spotting of connected dynamic hand gestures provided ex-
cellent recognition results and a high temporal accuracy.

1. INTRODUCTION

The validity and performance of a HMM-based approach to
the classification ofisolatedimage sequences have been re-
cently demonstrated by some works (e. g. [1, 5, 6, 7, 8, 9]).
All of these works deal with manually labeled image se-
quence material. However, many applications in anatural
environment — like our gesture recognition task — require
an automatictemporal segmentation. The corresponding
task is now to detect so calledkey image sequencesin a
continuousvideo sequence and to identify them. With our
stochastic approach these two problems can be solved as an
integral process.

This problem is related to the procedure ofkeyword spot-
ting in speech recognition where HMMs are successfully
used for a long time [3]. But there is a main difference:
continuous speech is composed of a defined and countable
number of keywords and non-keywords, whereas in the case
of a continuous video stream a defined number of key im-
age sequences is embedded in a background of an indefinite
number of movements and transitions.

For that reason, many spotting approaches in speech
processing that explicitly model non-keywords or even inte-
grate a language model are difficult to transfer to the image
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Figure 1: System overview

processing domain. Our new approach is rather an adapted
and improved version of a context free spotting method us-
ing HMMs only for the key image sequence modeling [4].

Every isolated key image sequence is represented by a
HMM λ1;λ2; : : : ;λM, which has to be trained with manu-
ally segmented video sequences (see fig. 1). The features
of the continuous video stream (see sec. 2.1) are fed into the
HMMs producing a characteristic course of the output score
at the respective HMMs: the HMMs can be considered as
“continuous filters”. Using one of our modified Viterbi al-
gorithms (see sec 2.2), the output score of a HMM increases
if it describes the momentary input video stream well, oth-
erwise it decreases (see fig. 2). The maximum score of the
matching HMM is reached at the end of a key image se-
quence so that a peak finding algorithm can indicate both
the time of occurance and the index of the appropriate key
sequence. Since in practice the peak detection in the pure
output signal is too unreliable, a smoothing step and a set of
decision rules was added (see sec. 2.3).

2. SYSTEM DESCRIPTION

2.1. Preprocessing and feature extraction

A color histogram based segmentation method calculatesbi-
nary imagessolely containing the hand shape. Afterwards
the image sequences are transformed intofeature vectors.
Many possiblities to generate features out of images are de-



scribed in the literature [1, 5, 6, 7, 8, 9]. Our experiments
showed that simple but fast calculable feature vectors forbi-
nary imagescan be build out of the Hu momentshi; t up to
orderH [2], the difference of the Hu moments of successive
images∆hi; t = hi; t �hi; t�1 the difference of the shape areas
∆At = At �At�1, and the difference of the centers of mass
∆xc; t = xc; t �xc; t�1 and∆yc; t . The resulting feature vector
at timet is

vt = [∆At ;∆xc; t ;∆yc; t ;

h1; t ; : : : ;hNH ; t ;∆h1; t ; : : : ;∆hNH ; t ]
T: (1)

2.2. Normalized Viterbi algorithms

The used HMMs are semi-continuous since those models
are a good compromise between few training data and ac-
curacy of modeling [3]. Semi-continuous HMMs have a
codebook of mixture density functions (orprototypes) cal-
culated for the whole training data. The specific probability
density functions (pdfs)fsi (vt) in the statessi , i = 1; : : : ;N
are weighted sums of the prototypes.

The models are trained using the standard Viterbi algo-
rithm [3]. Using the state pdfsFsi ; t = log fsi (vt) and the
transition probabiltiesAsj ;si = logasj ;si , the Viterbi algo-
rithm recursively accumulates and maximizes the local score
Dsi ; t for every HMM state:

Dsi ; t = max
j
[Dsj ; t�1+Asj ;si ]+Fsi ; t : (2)

The output score, which is the score of the last stateDsN; t ,
is crucial to the continuousrecognizingprocess. But the
standard Viterbi algorithm of eq. (2) cannot be used since
depending on the average state pdfsFsi ; t the output score
will permanently increase or decrease on the average. To
stabilize the average score, it has to benormalizedto its re-
spective Viterbi path length. Two normalization procedures
have been examined:

(N1) If the scoreDsi ; t is just normalized to the total path
lengthLtotal = t, the contribution of a new Viterbi step will
decline according to the increasing total timet. For that
reason, a new normalization method was introduced using a
constant lengthLn, which can be recursivly formulated as:

Dsi ; t =

�
max

j
[Dsj ; t�1 �Ln+Asj ;si ]+Fsi ; t

�
1

Ln+1
: (3)

It can be shown that this normalization leads to an expo-
nentially decreasing influence of the “older” scores in the
Viterbi path which will stabilize the output score (example
see fig. 2a). If the lengthLn is zero, the output score is build
without the preceeding path history.

(N2) In addition to the local scoreDsi ; t a local path
lengthLsi ; t can be introduced:

Dsi ; t = max
j

"
Dsj ; t�1 �Lsj ; t�1+Asj ;si +Fsi ; t

Lsj ; t�1+1

#
;
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Figure 2: Output scores of two modelsλ1 (solid) andλ2

(dashed); appropriate gestures end at image #100 and image
#400: (a) N1 (Ln = 20), (b) N1 smoothed (Ln = 20, τsb =
30, τse= 0), (c) N2 (W = 45), (d) N2 smoothed (W = 45,
τsb= 30,τse= 0)

Lsi ; t = Lsk; t�1+1 with k= index of bestsj . (4)

This allows recombining paths to have different lengths.
According to [4] it is now possible that at any timet a new
path withLs1; t = 1 andDs1; t = 0 may start in competition
with the normal continuation of the Viterbi path from the
preceeding states1. But using this initialization, the score
history is compared to an arbitrary constantDs1; t = 0. To be
able to control the “trigger” probability of a new path, a new
adjustableentry weight Ds1; t =W was defined (example see
fig. 2c).

2.3. Smoothing and peak finding rules

The output scores of an HMMλi using either normalization
method can be quite ragged (see fig. 2a and c). To simplify



the peak search, the scores are smoothed by averaging the
scores from�τsb to τse:

D̄(λi)
sN; t =

1
τse+ τsb+1

τse

∑
τ=�τsb

D(λi)
sN; t+τ (5)

(examples see fig. 2b and d). After that, four decision rules
R1–R4 are applied to find a valid peak at timetp. The

smoothed output scorēD(λi)
sN; tp of modelλi

R1: must be the maximum in an increasing score series
from tp�τpb; : : : ; tp and a decreasing score series from
tp; : : : ; tp+ τpe,

R2: must be greater than a model dependent rejection

thresholdD̄(λi )
thres,

R3: must have the highest score compared to the scores of
all the other modelsλ j , and

R4: must have aminimum temporal distanceof tdist to the
last valid peak found.

The model dependent threshold of rule R2 is expressed by
a singlerelative rejection threshold Srel with the help of the
model specific maximum and minimum scores:

D̄(λi)
thres= D̄(λi)

max�Srel �

h
D̄(λi)

max� D̄(λi)
min

i
: (6)

The smoothing process and the rules R1–R4 turned out to
be very important for the robustness and effectiveness of the
spotting process (see sec. 4).

3. TEST DATA DESCRIPTION

The gesture spotting system is planned to be a part of a
three-dimensional graphics scene editor that can be visu-
ally controled by hand and head gestures [5, 6]. Performing
a number of “Wizard of Oz” experiments, a catalog of 12
commonly used hand gestures could be determined (see ta-
ble 1). These gestures form the basis of the following tests.

In the experimental setup, the camera was mounted
above a uniformly colored table area looking downward to
the right hand of the user. Each of the 12 gestures was
recorded 30 times and stored as an isolated key image se-
quence. All gestures were performed by a single person.
Each image sequence contained 70 non-interlaced images
at the European rate of 50 images (fields) per second. The
final size of the images was 192�144 pixels.

The image material was devided in 20 training and 10
test sequences.Continuoustraining and test sequences were
generated out of theisolatedtraining and test sequences by
linking them together using filler sequences of the length
Lfill (in images). The filler sequences contained linearly in-
terpolated feature vectors that smoothly connected succes-
sive key image sequences. The “Wizard of Oz” experiments

# action # action

1 go to the front 7 reset
2 go to the left 8 grab
3 go to the rear 9 release
4 go to the right 10 grab on the left
5 take this 11 grab on the right
6 no 12 stop action

Table 1: Gesture catalog

showed that this is a very good approximation of the real
user behaviour: mostly distinct gestures with smooth tran-
sitions were performed.

The 12 HMMs were trained with the isolated training
sequences. The continuous training sequences were used
to determine the model dependent minimum and maximum
scores, which are needed to calculate the absolute thresh-
olds in eq. (6). Finally the continuous test sequences were
used to evaluate the spotting system.

4. EVALUATION CRITERIA AND
EXPERIMENTAL RESULTS

A gesture that ends at timetg is defined as correctly recog-
nized if the system indicates it at a timetp that lies within
an interval of�35 images aroundtg (arbitrary defined as
half the length of a key gesture). The temporal detection
delay istd = tp� tg. The recognition rate r is the “ratio
of correctly recognized gestures to the total number of key
gestures” in a continuous sequence.t̄d is theaverage detec-
tion delayof correctly recognized gestures. Thetotal av-
erage delaȳttd between occurance and detection of a ges-
ture is t̄td = t̄d +max[τse;τpe]. The false accept rate fis
measured infa=kg=h = “number of wrongly accepted ges-
tures/number of key gestures/hour” (in analogy to keyword
spotting, e. g. see in [4]).

The HMMs had 256 prototypes and 25 states for all re-
sults shown. The feature vectors according to eq. (1) con-
tain Hu moments up to the orderH = 2. The smoothing
and peak detection intervals (τsb, τse, τpb, τpe), the rejection
thresholdSrel and the minimum temporal peak distancetdist

were extensively varied to empirically find the optimal re-
sults (see tables 2–4 for the respective values). The length
of the filler sequences reached fromLfill = 35 to 140 to sim-
ulate the usual transition durations between gestures.

Table 2 shows the results applying normalization method
N1 used in eq. (3). While a recognition rate of 95% for
Lfill = 35 is acceptable, the false accept rate increases sig-
nificantly for longer filler sequences even if a low rejection
thresholdSrel is used (the increasing recognition rate for a
lowerSrel is due to the hightdist).



LfillSrel 35 70 105 140
average

r 0.95 0.78 0.85 0.83 0.853
w/o f 5.95 49.11 61.43 66.07 45.640

t̄d 4.34 5.61 5.19 6.09 5.308

r 0.95 0.92 0.86 0.84 0.893
0.05 f 2.38 16.96 54.29 60.12 33.438

t̄d 4.19 4.85 5.10 6.12 5.065

Table 2: Normalization N1: recognition ratesr, false accept
ratesf and average detecton delayst̄d resulting from differ-
ent fill lengthsLfill and rejection thresholdsSrel (Ln = 15,
τsb= 20,τse= 10,τpb = 30,τpe= 3, tdist = 70)

WSrel 0 45 90 135 170

r 0.89 0.99 1.00 1.00 0.98
w/o f 40.71 21.43 26.43 31.43 55.00

t̄d 15.40 10.79 8.61 7.48 6.50

r 0.89 0.99 0.98 1.00 0.95
0.05 f 17.14 1.43 0.00 0.00 1.43

t̄d 15.40 10.79 8.59 7.48 6.18

Table 3: Nomalization N2: recognition ratesr, false ac-
cept ratesf and average detection delayst̄d resulting from
different entry weightsW and rejection thresholdsSrel

(Lfill = 105,τsb= 30,τse= 1, τpb = 30,τpe= 1, tdist = 10)

On the other hand, normalization method N2 shown in
eq. (4) can be very efficient, provided that an appropriate
entry weightW is used (see table 3 for results at a constant
Lfill ). With an optimal weight ofW = 135 and a rejection
threshold ofSrel = 0:05, method N2 produces an average
recogition rate of 99.5% with an average false accept er-
ror of 0 over the whole range of filler lenghts (see table 4).
Since both end times for the smooth and peak search inter-
valsτseandτpe are 1 (this is the minimum value forτpe), the
total average time delay for gesture detection isttd = 8:29
which is only about 0.17 seconds.

5. CONCLUSION

A new stochastic approach to the temporal segmentation
and classification of image sequences was introduced. Us-
ing an improved HMM-based spotting method, both prob-
lems can be solved in an integral way. Applying this ap-
proach to the recognition of connected dynamic gestures
provided very good recognition rates and low temporal de-
tection delays. Depending on the underlying feature extrac-
tion, the approach is univerally applicable to many video
spotting tasks.

LfillSrel 35 70 105 140
average

r 1.00 1.00 1.00 1.00 1.000
0.1 f 1.19 1.79 4.29 6.55 3.455

t̄d 6.98 7.39 7.48 7.51 7.340

r 0.98 1.00 1.00 1.00 0.995
0.05 f 0.00 0.00 0.00 0.00 0.000

t̄d 6.78 7.39 7.48 7.51 7.290

Table 4: Normalization N2: recognition ratesr, false accept
ratesf and average detection delayst̄d resulting from differ-
ent fill lengthsLfill and rejection thresholdsSrel (W = 135,
τsb= 30,τse= 1, τpb = 30,τpe= 1, tdist = 10)
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