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ABSTRACT

This paper introduces a novel closed-form ESPRIT-based
algorithm for multi-source direction finding using arbitrar-
ily spaced electromagnetic vector-sensors whose locations
need not be known. The electromagnetic vector-sensor, al-
ready commercially available, consists of six co-located but
diversely polarized antennas separately measuring all six
electromagnetic-field components of an incident wavefield.
In this novel algorithm, ESPRIT exploits the non-spatial
inter-relations among the six unknown electromagnetic-field
components of each source and produces from the mea-
sured data a set of eigenvalues, from which the source’s
electromagnetic-field vector may be estimated to within a
complex scalar. Application of a vector cross-product op-
eration to this ambiguous electromagnetic-field vector es-
timate produces an unambiguous estimate of that source’s
normalized Poynting-vector, which contains as its compo-
nents the source’s Cartesian direction-cosines. Monte Carlo
simulation results verify the efficacy and versatility of this
innovative scheme.

1. INTRODUCTION

ESPRIT (Estimation of Signal Parameters via Rotational
Invariance Techniques [2]) represents a highly popular
eigenstructure (subspace) parameter estimation method.
ESPRIT requires a certain invariance structure in the sam-
pled data set; and this invariance structure has generally
been realized in most ESPRIT-based direction-finding (DF)
algorithms as a spatialinvariance dependent on some known
translational displacement (A) between two identical sub-
arrays of sensors. This spatial-invariance relates the two
subarrays’ responses to the kth impinging source through

an invariant phase-factor eﬂﬂ%“(ek’%), where A denotes the
signal wavelength and (65, ¢x) represents the kth source’s
direction-cosine parameterized by the elevation angle 6, and
the azimuth angle ¢x. Thus, estimation of this invariant
phase-factor would yield an estimate of the kth source’s
direction-cosine (and hence its direction-of-arrival).

In contrast, this proposed algorithm advances a non-
spatial realization of ESPRIT’s invariance structure, such
that the invariance factors would depend only on the im-
pinging signals’ direction-cosines and not on array geome-
try. This proposed algorithm also offers closed-form solu-
tions for any irregular and even possibly unknown array ge-
ometry, whereas most other algorithms would require iter-
ative searches (such as the MUSIC algorithm [1]) to handle
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arbitrary and a priori known array geometry. As a conse-
quence, this proposed algorithm (1) is computationally less
intensive than many open-form search methods, (2) requires
no a priori coarse estimates of the arrival angle to start off
any iterative search, (3) requires no a priori detailed cali-
brated knowledge and computer storage of the array man-
ifold, (4) makes possible sparse array aperture extension
while producing closed-form unambiguous arrival angle es-
timation with no extra computation needed for disambigua-
tion. Because this novel algorithm is also highly parallel in
its computational structure, concurrent computer process-
ing facilitates real-time implementations.

This novel scheme employs electromagnetic vector-
sensors, each of which consists of six spatially co-located but
diversely polarized antennas, separately measuring all three
electrical-field components and all three magnetic-field com-
ponents of the incident wave-field. Electromagnetic vector-
sensors can exploit any polarization diversity among the
impinging radar sources. Sources impinging upon the ar-
ray from the same angular directions can thus be resolved
on account of their distinct polarization states, thereby en-
hancing performance. Electromagnetic vector-sensors are
already commercially available, for example from Flam and
Russell Inc. in Horsham, Pennsylvania, U.S.A. [3] and from
EMC Baden Inc. in Baden, Switzerland.

The first direction-finding algorithms explicitly exploit-
ing all six electromagnetic components appear to have been
developed separately by Nehorai & Paldi [4] and Jian Li [5].
Nehorai & Paldi [4], who coined the term ”vector-sensor”,
pioneered the simple but novel idea of using the vector
cross-product of the electric-field vector estimate and the
magnetic-field vector estimate (provided the vector-sensor
outputs) to estimate directly the two-dimensional radial di-
rection of a source. This vector cross-product angle esti-
mator has been applied to eigenstructure-based direction
finding by Wong & Zoltowski in [7-11]. Whereas the mul-
tiple vector-sensor direction finding algorithms of [7,9-11]
require a priori knowledge of array geometry, this proposed
algorithm does not.

This present paper may be considered as an elegant and
simplified improvement of Jian Li’s ESPRIT-based algo-
rithm [5] for magnetic loops and electric dipoles. Like [5]
but unlike [7-11], the present algorithm considers the L
vector-sensors (with their 6L components) as six co-located
subarrays, each of which comprises identically polarized an-
tennas but among which the polarization is diverse. Like
[5], the present algorithm applies ESPRIT multiple times
to distinct pairs of these six subarrays to extract the in-
variant factors characterizing the six electromagnetic-field
components of the impinging sources. The pivotal insight
of this paper is that five invariant factors relating the six
electromagnetic-field components suffice for unique deter-
mination of the source’s normalized Poynting vector and
thus the source’s arrival angles. That is, these five invari-
ant factors would produce an ambiguous estimate of each



impinging source’s electromagnetic-field vector, correct to
within a complex scalar. This electromagnetic-field vector
estimate, though ambiguous, can produce an unambiguous
estimate of the source’s normalized Poynting vector via a
vector cross-product. This algorithm thus substitutes the
elegant and simple operation of a vector cross product for
the complex manipulation in [5] involving a set of highly
non-linear equations. That both the present algorithm and
[5] do not require any a priori knowledge of the location
of any of the vector-sensors is because the aforementioned
invariant factors depend only on the source parameters but
not on the vector-sensors’ spatial locations.

2. MATHEMATICAL DATA MODEL

Uncorrelated transverse electromagnetic plane-waves, hav-
ing traveled through a homogeneous isotropic medium, im-
pinge upon a three-dimensional array of arbitrarily spaced
but identically oriented electromagnetic vector-sensors at
possibly unknown spatial locations. This identical orien-
tation assumption will be relaxed in the journal version of
this work. The kth such unit-power incident source has the
array manifold [4,5]: a(fx, ¢r, vk, k)

s, a1 (8x, ox, Y, k)
ey, az(0k, dr, vk, k)
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where 0 < 85, < 7 denotes the signal’s elevation angle mea-
sured from the vertical z-axis, 0 < ¢ < 27 signifies the
azimuth angle, 0 < v& < #/2 represents the auxiliary po-
larization angle and —# < nx < & symbolizes the polariza-
tion phase difference, The electric-field vector e; and the
magnetic-field vector hy are orthogonal to each other and
to the kth source’s direction of propagation; i.e., the nor-
malized Poynting-Vector pg:

d Pz, (6k7 ¢k) Uk sin ek Cos ¢k
ef def . .
pPr = Dy (O, i) = Vg = | sinf sin ¢k
Dz, Ok, Or) W cos 8
= ex(fk, bk, ve k) X hi(8k, dr, Vi, i) (3)
where * denotes complex conjugation, uy, vy and wy de-

note respectively the direction-cosine along the x-, y- and z-
axes. Whilst the above electromagnetic vector-sensor model
has not accounted for mutual coupling among the elec-
tromagnetic vector-sensor’s six component-antennas, this
model has been reported by Flam & Russell Inc. to be
a very good approximation of their CART array implemen-
tation of the electromagnetic vector-sensor concept.’

The inter-vector-sensor spatial phase-factor relating the
kth source to the lth electromagnetic vector-sensor at the
(possibly unknown) location (w1, yi, 1) is:

def Ziug YiVk Zl Wk
qz(9k7¢k) éej27'r Y 6J2Tr Y 6J2Tr < (4)

17 __.the patterns of the loops and dipoles [of the CART array]
are EXTREMELY close to the theoretical patterns, indicating
very good isolation and balance among the elements.”—private
correspondence from Mr. Richard Flam of Flam & Russell to
the first author on January 15, 1997.

The 6L x 1 array manifold for the entire L-element vector-
sensor array is:

alD (0n, b1, vy ) X
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where ® symbolizes the Kronecker-product operator.
With a total of K’ < L co-channel signals, the entire array
would yield a 6L x 1 vector measurement z(t) at times ¢:

K
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and n(t) symbolizes the 6L x 1 additive zero-mean white
noise vector, P denotes the kth signal’s power, o (t) rep-
resents a zero-mean unit-variance complex random process,
A refers to the signals’ wavelength, ¢ signifies the propa-
gation speed, and ¢ denotes the kth signal’s uniformly-
distributed random carrier phase.

With a total of N (with N > K') snapshots taken at the
distinct instances {t», n =1,..., N}, the present direction-
finding problem is to determine {8k, ¢, k =1,..., K} from

the 6L x N data set: Z = [ z(t1) z(tn) ]| without
knowledge of q(8x, ¢x). *

3. DF WITH ARBITRARILY SPACED
VECTOR-SENSORS AT UNKNOWN
LOCATIONS

3.1. Overview of Algorithm

The pivotal insight underlying the present algorithm is
that the 6L x 1 array manifold may be divided into six
(L x 1) subarray manifolds, which are related by invariant
factors dependent only on the inter-relation among the six
electromagnetic-field components of each source’s direction-
cosines but not on the vector-sensor’s spatial locations. To

be precise, the 6L x 1 array manifold ald) (Hk, Dk, Vi, 77k) =
a0k, dr, Vi, Mk ) ©d(k, ¢ ) may be alternately expressed as:

a1(6k7¢k7 Yk, nk)q(6k7¢k)
az (0k7 ¢k7 Yk, nk)q(6k7 ¢k)
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where J; is an L x 6L subarray selection matrix:

2 Although the proposed algorithm is herein presented in the
batch processing mode, real-time adaptive implementations of
this present algorithm may be readily realized for non-stationary
environments using the fast recursive eigen-decomposition up-
dating methods such as that in [6].
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and Oy, denotes an m x n zero matrix and I,, denotes
an m X m identity matrix. Six L x K subarray manifolds
{A;,7=1,...,6} may thus be formed out of the 6L x K
array manifold A:

def

A, &
These {Aq,...

follows:

J,A, j=1,...,0 (7

, Ag} subarray manifolds are inter-related as

G+l
X(1JJ+)

Ajypn = A (8)
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(4,941 def  a;jq1 (O, Sk, Ve k)
- aj (0, b5, Vk M)
the matrix-pencil {A;, A;11} has generalized eigenvalues
equal to {XECJ’]H), k = ., K}. Note that none of
{X(“‘H), k=1..K j = .,5} depends on the
vector-sensors’ locations {(z1,y1,21),1 = 1,...,L}. The
foregoing analysis thus suggests that without any con-
straint on nor any knowledge of the location of any of
the electromagnetic vector-sensors, application of ESPRIT
to the matrix-pencil in (8) would estimate the invariant

factors {x; (7.7+1) ,7 = 1,...,5} among kth source’s six

electromagnetlc ﬁeld components, {a;(0k, ¢r, vk, M%), J =

,6}. Note that ESPRIT may be apphed to the five
matrlx pencils {A;,A;41, J = 1,...,5} in parallel to
facilitate real-time implementation.

3.2. Subspace Decomposition

In eigenstructure (subspace) direction-finding methods such
as ESPRIT, the overall data correlation matrix ZZ¥ is de-
composed into a K -dimensional signal subspace and a (6L —
K')-dimensional noise subspace. Therefore, the first step in
the proposed algorithm is to compute the K (6L x 1) signal-
subspace eigenvectors by eigen-decomposing the 6L x 6L
data correlation matrix R,, = ZZ". Let E. be the 6L x K
matrix composed of the K eigenvectors corresponding to
the K largest eigenvalues of R..:

E. =~ AT =[a(61,61,71,m) @ q(b1,61), -,
a(fx, ¢x, vx,nx) @40k, ¢ox)] T (9)

where T symbolizes an unknown but non-singular K x K
coupling matrix. T is non-singular because both E. and A
are full rank. If there were no noise or if an infinite num-
ber of snapshots were available; the approximation would
become exact.

3.3. Jk=1,... K}

Analogous to (8), J; and J;41 are next used to construct
the signal-subspace matrix-pencil {E; ;, E. 41},

where x; In other words,

Estimation of {X 73+

E.;, = J,E.~A;T (10)
Eijri = JmE=A;nT (11)
There exists a K x K non-singular matrix FU /D relating

the two L x K full-ranked matrices E. ; and E. ;41 [1]:

ES,J'I’(]J-H) = E.jn

= AJT(]’J+1)‘I’(J’]+1) ~ A]+1T(]’J+1)
= T = ((B.,)"Ee,) T ((Bay)"Bayi)
= P+l (T(m+1))—1X(J,J+1)T(m+1) (12)

where TG = PUIHD T and PUYTY is some unknown
permutation matrix whose kth column is a K x 1 vector with
all zeroes except a one at the ixth position and {i1,...,ix}
is some permutation of {1,...,/K}. This unknown per-
mutation of the rows of T (i.e. the permutation of the
cigenvectors of ¥+ as columns of (TU7H+D)~1
in the eigen-decomposition of Tt _for any T satisfy-

ing (12), PUIHDT would likewise satisfy (12). From these,
(4,941

arises

the invariant factor x;; between the aj11(8k, dr, Vi, k)

and a;(8x, ¢k, vk, Mx) may be estimated for each of the K
sources:
o (5d+1) o
Xk(J)

where {[X7tV],,. k=1,..., K} constitute the diagonal

elements of the diagonal matrix X091t and are approxi-

mated by the eigenvalues of ¥UI+1 (The reason for the
superscript (7) in k will become clear shortly.) Furthermore,
J7J+1)]

~ XU, k=1,...,K (13)

the eigenvector corresponding to the eigenvalue [X(
constitutes the kth column of (T(“‘H))_

Note that different indices are used to enumerate X
for different values of j and that in general TV ’H’l) #*
T for § £ i, even though WU+ and ¥4+ ghare
the same set of eigenvectors. That is, the eigenvectors
are ordered differently in (T(“‘H))_1 as in (T(i’i+1))_

No mismatch, however, exists between )ZECJ’]-H) and its

corresponding eigenvector, namely the kth column of
(TUI+D)=L " This is true for all j € {1,...,5}. Thus,

X;J(’J‘i' ) may be paired with X(( ) Y from the same source

by matching the orthogonal rows of TU711) with those of

T ag follows. Let (k(J),k(’)) denote the row-index of
the matrix element with the largest absolute value in the
k@ _th column of the K x K matrix T(“H)(T(J’H'l))_ .
Then ¥, and X, belong to the same source. Note
that this pairing procedure involves minimum computation
and requires no exhaustive searches. An alternate pairing
method, requiring more computation but offering possibly
more robust pairing, is available in [6].

3.4. DOA Estimation via Vector-Sensor Product
The algorithm thus far is entirely parallel to that in [5] by

kk

5(5,9+1)

6
Jian Ti. With up to 2 2 2 ) /3! = 15 distinct pairings
among the six electromagnetic-field components, there are
available up to 15 non-linear equations relating the four un-
known signal parameters {85, ¢x, v, 7% }. Li [5] then derived
closed-form expressions for these four parameters based on
clever but complicated manipulation of these 15 non-linear
equations. Instead, the present algorithm will suggest a
simpler and more elegant approach based on the recogni-
tion that (1) preceding algorithmic steps have already es-
timated the six-component electromagnetic-field vector to
within a complex constant, (2) this result will be sufficient
to determine uniquely the corresponding normalized Poynt-
ing vector.

Because XEC 7,J+1) embodies

the ratio between aj41 (0, dr, i, nx) and a; (8, dr, Vi, k),
under noiseless conditions:

1
X(172)
NN
a0, pr, Yr, M) = ree’* RN CEINER)
X Xg Xk
(1,2)  (2,3)  (3,4) (4,5)
fo) o e Mas) o)
X X X "Xg Xk



where rp represents a real scalar, 0 < ap < 27, and
rre?®* = ez, . Thus, under noisy conditions px equals

1 (1,2) (2 3) (3,4) *
||7“k||2 XE;,?) % @2 f23 f34
XE€172)XE€273) Fl 2) f2 3) fs 4) @ 5)  (5,6)

However because Py = 1, the kth impinging source’s Carte-
sian direction-cosine estimates, [dx, 0%, wx]”, equal:

1 2) (2 3) ( 4) *
(1,2) Fl 2) f2 3) fs 4) (4 5)

X X
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X(l 2) ,(2,3) 2) 2 S)st 4)Xf€4 5)  (5,6)

Xe Xk Xi UXp U Xi

Thus, the complex scalar ambiguity of rre’** in (14) causes
no ambiguity in the direction cosine estimates.

3.5. Azimuth & Elevation Angle Estimates
From the direction-cosine estimates derived above, the kth
signal’s azimuth and elevation arrival angles can be esti-
mated as:

HAk = sin"? \/&i + {)i = cos™? Wi

qgk = tan ! LS
k

<>

Note that once the {Xﬁf’]ﬂ), j=1,...,5} are paired,
the azimuth and elevation estimates are also automatically
matched with no additional processing.

A basic calibration method and a simple remedy will also
be presented in the journal version of this work to illustrate
the possibility of modifying the foregoing algorithm to ac-
commodate electromagnetic vector-sensor mis-orientation.

4. SIMULATIONS

The simulation results presented in figure 1 verifies the
efficacy of this novel close-form direction finding al-
gorithm for arbitrarily spaced electromagnetic vector-
sensors at unknown locations. Two closely-spaced equal-
power uncorrelated narrowband sources impinge upon
a 13-element irregularly spaced three-dimensional ar-
ray of vector-sensors. This array may be considered
as a 9-element non-uniformly spaced cross-shaped ar-
A

ray with elements at the Cartesian coordinates 5 X

{(0,0,0), (£1,0,0)(£2.7,0,0), (0, £1,0), (0, £2.7,0)} plus a
4-element square array with elements at the Cartesian co-

ordinates % x {(£4,£4,1)}. The two closely-spaced equal-

power uncorrelated narrowband sources have the follow-
ing parameter values: §; = 30.93°,¢1 = 37.09°, 8 =
50.08°, o = 39.71°. (that is, the first source has u; = 0.41
and v1 = 0.31 and the second source has us = 0.59 and
vz = 0.49.) The polarization states are y; = 45°, 17 = 90°,
v2 = 45°, 12 = —90°. The SNR is defined relative to each
source. 200 snapshots are used in each of the 500 indepen-
dent Monte Carlo simulation experiments.

The composite RMS standard deviation plotted is com-
puted by taking the square root of the mean of the respec-
tive samples variances of & and ¢. The estimation bias (not
shown) is about an order of magnitude smaller than the
estimation standard deviation and follows a similar trend.
Note that uz — u; = v; — v2 = 0.18; thus, the two sources
would be resolved and identified with high probability if
both the estimation standard deviation and the bias are
under approximately 0.05. The proposed ESPRIT-based

Figure 1: RMS standard deviation of {d,?} versus SNR.
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algorithm successfully resolves these closely-spaced sources
for all SNR’s at or above —12 dB. Above these SNR res-
olution thresholds, estimation standard deviation and bias
both decrease fairly linearly with increasing SNR dB values.
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