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ABSTRACT

This paper introduces a novel closed-form ESPRIT-based
algorithm for multi-source direction �nding using arbitrar-
ily spaced electromagnetic vector-sensors whose locations
need not be known. The electromagnetic vector-sensor, al-
ready commercially available, consists of six co-located but
diversely polarized antennas separately measuring all six
electromagnetic-�eld components of an incident wave�eld.
In this novel algorithm, ESPRIT exploits the non-spatial
inter-relations among the six unknown electromagnetic-�eld
components of each source and produces from the mea-
sured data a set of eigenvalues, from which the source's
electromagnetic-�eld vector may be estimated to within a
complex scalar. Application of a vector cross-product op-
eration to this ambiguous electromagnetic-�eld vector es-
timate produces an unambiguous estimate of that source's
normalized Poynting-vector, which contains as its compo-
nents the source's Cartesian direction-cosines. Monte Carlo
simulation results verify the e�cacy and versatility of this
innovative scheme.

1. INTRODUCTION

ESPRIT (Estimation of Signal Parameters via Rotational
Invariance Techniques [2]) represents a highly popular
eigenstructure (subspace) parameter estimation method.
ESPRIT requires a certain invariance structure in the sam-
pled data set; and this invariance structure has generally
been realized in most ESPRIT-based direction-�nding (DF)
algorithms as a spatial invariance dependent on some known
translational displacement (�) between two identical sub-
arrays of sensors. This spatial-invariance relates the two
subarrays' responses to the kth impinging source through

an invariant phase-factor ej2�
�
�
u(�k;�k), where � denotes the

signal wavelength and u(�k; �k) represents the kth source's
direction-cosine parameterized by the elevation angle �k and
the azimuth angle �k. Thus, estimation of this invariant
phase-factor would yield an estimate of the kth source's
direction-cosine (and hence its direction-of-arrival).
In contrast, this proposed algorithm advances a non-

spatial realization of ESPRIT's invariance structure, such
that the invariance factors would depend only on the im-
pinging signals' direction-cosines and not on array geome-
try. This proposed algorithm also o�ers closed-form solu-
tions for any irregular and even possibly unknown array ge-
ometry, whereas most other algorithms would require iter-
ative searches (such as the MUSIC algorithm [1]) to handle
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arbitrary and a priori known array geometry. As a conse-
quence, this proposed algorithm (1) is computationally less
intensive than many open-form search methods, (2) requires
no a priori coarse estimates of the arrival angle to start o�
any iterative search, (3) requires no a priori detailed cali-
brated knowledge and computer storage of the array man-
ifold, (4) makes possible sparse array aperture extension
while producing closed-form unambiguous arrival angle es-
timation with no extra computation needed for disambigua-
tion. Because this novel algorithm is also highly parallel in
its computational structure, concurrent computer process-
ing facilitates real-time implementations.
This novel scheme employs electromagnetic vector-

sensors, each of which consists of six spatially co-located but
diversely polarized antennas, separately measuring all three
electrical-�eld components and all three magnetic-�eld com-
ponents of the incident wave-�eld. Electromagnetic vector-
sensors can exploit any polarization diversity among the
impinging radar sources. Sources impinging upon the ar-
ray from the same angular directions can thus be resolved
on account of their distinct polarization states, thereby en-
hancing performance. Electromagnetic vector-sensors are
already commercially available, for example from Flam and
Russell Inc. in Horsham, Pennsylvania, U.S.A. [3] and from
EMC Baden Inc. in Baden, Switzerland.
The �rst direction-�nding algorithms explicitly exploit-

ing all six electromagnetic components appear to have been
developed separately by Nehorai & Paldi [4] and Jian Li [5].
Nehorai & Paldi [4], who coined the term "vector-sensor",
pioneered the simple but novel idea of using the vector
cross-product of the electric-�eld vector estimate and the
magnetic-�eld vector estimate (provided the vector-sensor
outputs) to estimate directly the two-dimensional radial di-
rection of a source. This vector cross-product angle esti-
mator has been applied to eigenstructure-based direction
�nding by Wong & Zoltowski in [7-11]. Whereas the mul-
tiple vector-sensor direction �nding algorithms of [7,9-11]
require a priori knowledge of array geometry, this proposed
algorithm does not.
This present paper may be considered as an elegant and

simpli�ed improvement of Jian Li's ESPRIT-based algo-
rithm [5] for magnetic loops and electric dipoles. Like [5]
but unlike [7-11], the present algorithm considers the L
vector-sensors (with their 6L components) as six co-located
subarrays, each of which comprises identically polarized an-
tennas but among which the polarization is diverse. Like
[5], the present algorithm applies ESPRIT multiple times
to distinct pairs of these six subarrays to extract the in-
variant factors characterizing the six electromagnetic-�eld
components of the impinging sources. The pivotal insight
of this paper is that �ve invariant factors relating the six
electromagnetic-�eld components su�ce for unique deter-
mination of the source's normalized Poynting vector and
thus the source's arrival angles. That is, these �ve invari-
ant factors would produce an ambiguous estimate of each



impinging source's electromagnetic-�eld vector, correct to
within a complex scalar. This electromagnetic-�eld vector
estimate, though ambiguous, can produce an unambiguous
estimate of the source's normalized Poynting vector via a
vector cross-product. This algorithm thus substitutes the
elegant and simple operation of a vector cross product for
the complex manipulation in [5] involving a set of highly
non-linear equations. That both the present algorithm and
[5] do not require any a priori knowledge of the location
of any of the vector-sensors is because the aforementioned
invariant factors depend only on the source parameters but
not on the vector-sensors' spatial locations.

2. MATHEMATICAL DATA MODEL

Uncorrelated transverse electromagnetic plane-waves, hav-
ing traveled through a homogeneous isotropic medium, im-
pinge upon a three-dimensional array of arbitrarily spaced
but identically oriented electromagnetic vector-sensors at
possibly unknown spatial locations. This identical orien-
tation assumption will be relaxed in the journal version of
this work. The kth such unit-power incident source has the
array manifold [4,5]: a(�k ; �k; k; �k)

def
=

h
ek
hk

i
def
=

2
6664

exk
eyk
ezk
hxk
hyk
hzk
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| {z }
def
=�k

h
sin k ej�k

cos k

i
| {z }

def
= gk

(2)

where 0 � �k < � denotes the signal's elevation angle mea-
sured from the vertical z-axis, 0 � �k < 2� signi�es the
azimuth angle, 0 � k < �=2 represents the auxiliary po-
larization angle and �� � �k < � symbolizes the polariza-
tion phase di�erence, The electric-�eld vector ek and the
magnetic-�eld vector hk are orthogonal to each other and
to the kth source's direction of propagation; i.e., the nor-
malized Poynting-Vector pk:

pk
def
=

"
pxk (�k; �k)
pyk (�k; �k)
pzk(�k; �k)

#
def
=

"
uk
vk
wk

#
=

"
sin �k cos �k
sin �k sin �k
cos �k

#
= ek(�k; �k; k; �k)� h�k(�k; �k; k; �k) (3)

where � denotes complex conjugation, uk; vk and wk de-
note respectively the direction-cosine along the x-, y- and z-
axes. Whilst the above electromagnetic vector-sensor model
has not accounted for mutual coupling among the elec-
tromagnetic vector-sensor's six component-antennas, this
model has been reported by Flam & Russell Inc. to be
a very good approximation of their CART array implemen-
tation of the electromagnetic vector-sensor concept.1

The inter-vector-sensor spatial phase-factor relating the
kth source to the lth electromagnetic vector-sensor at the
(possibly unknown) location (xl; yl; zl) is:

ql(�k; �k)
def
= ej2�

xluk
� ej2�

ylvk
� ej2�

zlwk
� (4)

1"...the patterns of the loops and dipoles [of the CART array]
are EXTREMELY close to the theoretical patterns, indicating
very good isolation and balance among the elements."|private
correspondence from Mr. Richard Flam of Flam & Russell to
the �rst author on January 15, 1997.

The 6L� 1 array manifold for the entire L-element vector-
sensor array is:

a(L)(�k; �k; k; �k)
def
= a(�k; �k; k; �k)
 q(�k; �k)

q(�k ; �k)
def
= q(u(�k; �k); v(�k; �k))

=

2
4 q1(�k; �k)

...
qL(�k; �k)

3
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where 
 symbolizes the Kronecker-product operator.
With a total ofK � L co-channel signals, the entire array

would yield a 6L � 1 vector measurement z(t) at times t:

z(t) =

KX
k=1

a
(L)(�k; �k; l; �l)sk(t) + n(t) = As(t) + n(t)

with
sk(t)

def
=

pPk�k(t)ej(2� c
�
t+'k)

A
def
= [a(L)(�1; �1; 1; �1); � � � ;a(L)(�K; �K; K; �K)]

s(t)
def
=

2
4 s1(t)

...
sK(t)

3
5 ; n(t)

def
=

2
4 n1(t)

...
n6L(t)

3
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and n(t) symbolizes the 6L � 1 additive zero-mean white
noise vector, Pk denotes the kth signal's power, �k(t) rep-
resents a zero-mean unit-variance complex random process,
� refers to the signals' wavelength, c signi�es the propa-
gation speed, and 'k denotes the kth signal's uniformly-
distributed random carrier phase.
With a total of N (with N > K) snapshots taken at the

distinct instances ftn; n = 1; : : : ;Ng, the present direction-
�nding problem is to determine f�k; �k; k = 1; : : : ;Kg from
the 6L � N data set: Z

def
= [ z(t1) : : : z(tN ) ] without

knowledge of q(�k ; �k).
2

3. DF WITH ARBITRARILY SPACED
VECTOR-SENSORS AT UNKNOWN

LOCATIONS

3.1. Overview of Algorithm

The pivotal insight underlying the present algorithm is
that the 6L � 1 array manifold may be divided into six
(L � 1) subarray manifolds, which are related by invariant
factors dependent only on the inter-relation among the six
electromagnetic-�eld components of each source's direction-
cosines but not on the vector-sensor's spatial locations. To
be precise, the 6L � 1 array manifold a(L)(�k; �k; k; �k) =
a(�k; �k; k; �k)
q(�k; �k) may be alternately expressed as:

a
(L)(�k; �k; k; �k) =

2
6664

a1(�k; �k; k; �k)q(�k; �k)
a2(�k; �k; k; �k)q(�k; �k)
a3(�k; �k; k; �k)q(�k; �k)
a4(�k; �k; k; �k)q(�k; �k)
a5(�k; �k; k; �k)q(�k; �k)
a6(�k; �k; k; �k)q(�k; �k)
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with Jja
(L)(�k; �k)

def
= aj(�k; �k; k; �k)q(�k; �k) (5)

where Jj is an L � 6L subarray selection matrix:

2Although the proposed algorithm is herein presented in the
batch processing mode, real-time adaptive implementations of
this present algorithmmay be readily realized for non-stationary
environments using the fast recursive eigen-decomposition up-
dating methods such as that in [6].



Jj
def
=

�
OL;L�(j�1)

...IL
...OL;L�(6�j)

�
; j = 1; : : : ; 6 (6)

and Om;n denotes an m � n zero matrix and Im denotes
an m�m identity matrix. Six L �K subarray manifolds
fAj ; j = 1; : : : ; 6g may thus be formed out of the 6L �K
array manifold A:

Aj
def
= JjA; j = 1; : : : ; J (7)

These fA1; : : : ;A6g subarray manifolds are inter-related as
follows:

Aj+1 = Aj

2
64 �

(j;j+1)
1

. . .

�
(j;j+1)
K

3
75

| {z }
def
=X(j;j+1)

(8)

where �
(j;j+1)
k

def
=

aj+1(�k;�k ;k ;�k)

aj(�k;�k ;k ;�k)
. In other words,

the matrix-pencil fAj ;Aj+1g has generalized eigenvalues

equal to f�(j;j+1)k ; k = 1; : : : ;Kg. Note that none of

f�(j;j+1); k = 1; : : : ;K; j = 1; : : : ; 5g depends on the
vector-sensors' locations f(xl; yl; zl); l = 1; : : : ; Lg. The
foregoing analysis thus suggests that without any con-
straint on nor any knowledge of the location of any of
the electromagnetic vector-sensors, application of ESPRIT
to the matrix-pencil in (8) would estimate the invariant

factors f�(j;j+1)k ; j = 1; : : : ; 5g among kth source's six
electromagnetic-�eld components, faj(�k; �k; k; �k); j =
1; : : : ; 6g. Note that ESPRIT may be applied to the �ve
matrix-pencils fAj ;Aj+1; j = 1; : : : ; 5g in parallel to
facilitate real-time implementation.

3.2. Subspace Decomposition

In eigenstructure (subspace) direction-�nding methods such
as ESPRIT, the overall data correlation matrix ZZH is de-
composed into a K-dimensional signal subspace and a (6L�
K)-dimensional noise subspace. Therefore, the �rst step in
the proposed algorithm is to compute the K (6L�1) signal-
subspace eigenvectors by eigen-decomposing the 6L � 6L
data correlation matrix Rzz = ZZH . Let Es be the 6L�K
matrix composed of the K eigenvectors corresponding to
the K largest eigenvalues of Rzz:

Es � AT = [a(�1; �1; 1; �1)
 q(�1; �1); � � � ;
a(�K; �K; K; �K)
 q(�K ; �K)]T (9)

where T symbolizes an unknown but non-singular K � K
coupling matrix. T is non-singular because both Es and A
are full rank. If there were no noise or if an in�nite num-
ber of snapshots were available; the approximation would
become exact.

3.3. Estimation of f�(j;j+1)k ; k = 1; : : : ;Kg
Analogous to (8), Jj and Jj+1 are next used to construct
the signal-subspace matrix-pencil fEs;j ;Es;j+1g,

Es;j = JjEs � AjT (10)

Es;j+1 = Jj+1Es � Aj+1T (11)

There exists a K�K non-singular matrix 	(j;J+1) relating
the two L�K full-ranked matrices Es;j and Es;j+1 [1]:

Es;j	
(j;j+1) = Es;j+1

) AjT
(j;j+1)

	
(j;j+1) � Aj+1T

(j;j+1)

) 	
(j;j+1) =

�
(Es;j)

H
Es;j

��1 �
(Es;j)

H
Es;j+1

�
) 	

(j;j+1) � (T(j;j+1))�1X(j;j+1)
T

(j;j+1) (12)

where T(j;j+1) = P(j;j+1)T, and P(j;j+1) is some unknown
permutation matrix whose kth column is aK�1 vector with
all zeroes except a one at the ikth position and fi1; : : : ; iKg
is some permutation of f1; : : : ;Kg. This unknown per-
mutation of the rows of T (i.e. the permutation of the

eigenvectors of 	(j;j+1)) as columns of (T(j;j+1))�1 arises

in the eigen-decomposition of 	(j;j+1)|for any T satisfy-
ing (12), P(j;j+1)T would likewise satisfy (12). From these,

the invariant factor �(j;j+1)k between the aj+1(�k; �k; k; �k)
and aj(�k; �k; k; �k) may be estimated for each of the K
sources:

�̂
(j;j+1)

k(j)
� [X(j;j+1)]kk; k = 1; : : : ;K (13)

where f[X(j;j+1)]kk; k = 1; : : : ;Kg constitute the diagonal
elements of the diagonal matrix X(j;j+1) and are approxi-
mated by the eigenvalues of 	(j;j+1). (The reason for the
superscript (j) in k will become clear shortly.) Furthermore,

the eigenvector corresponding to the eigenvalue [X(j;j+1)]kk
constitutes the kth column of (T(j;j+1))�1.

Note that di�erent indices are used to enumerate �̂(j;j+1)k

for di�erent values of j and that in general T(j;j+1) 6=
T(i;i+1) for j 6= i, even though 	(j;j+1) and 	(i;i+1) share
the same set of eigenvectors. That is, the eigenvectors
are ordered di�erently in (T(j;j+1))�1 as in (T(i;i+1))�1.

No mismatch, however, exists between �̂
(j;j+1)
k and its

corresponding eigenvector, namely the kth column of
(T(j;j+1))�1. This is true for all j 2 f1; : : : ; 5g. Thus,

�̂
(j;j+1)

k(j)
may be paired with �̂

(i;i+1)

k(i)
from the same source

by matching the orthogonal rows of T(j;j+1) with those of
T(i;i+1) as follows. Let (k(j); k(i)) denote the row-index of
the matrix element with the largest absolute value in the
k(i)-th column of the K � K matrix T(i;i+1)(T(j;j+1))�1.
Then �̂k(j) and �̂k(i) belong to the same source. Note
that this pairing procedure involves minimum computation
and requires no exhaustive searches. An alternate pairing
method, requiring more computation but o�ering possibly
more robust pairing, is available in [6].

3.4. DOA Estimation via Vector-Sensor Product

The algorithm thus far is entirely parallel to that in [5] by

Jian Li. With up to

�
6

2 2 2

�
=3! = 15 distinct pairings

among the six electromagnetic-�eld components, there are
available up to 15 non-linear equations relating the four un-
known signal parameters f�k; �k; k; �kg. Li [5] then derived
closed-form expressions for these four parameters based on
clever but complicated manipulation of these 15 non-linear
equations. Instead, the present algorithm will suggest a
simpler and more elegant approach based on the recogni-
tion that (1) preceding algorithmic steps have already es-
timated the six-component electromagnetic-�eld vector to
within a complex constant, (2) this result will be su�cient
to determine uniquely the corresponding normalized Poynt-
ing vector.

Because �
(j;j+1)
k

embodies
the ratio between aj+1(�k; �k; k; �k) and aj(�k; �k; k; �k),
under noiseless conditions:

â(�k; �k; k; �k) = rke
j�k

2
666664

1

�
(1;2)
k

�
(1;2)
k

�
(2;3)
k

�
(1;2)
k �

(2;3)
k �

(3;4)
k

�
(1;2)
k �

(2;3)
k �

(3;4)
k �

(4;5)
k

�
(1;2)
k �

(2;3)
k �

(3;4)
k �

(4;5)
k �

(5;6)
k

3
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where rk represents a real scalar, 0 � �k < 2�, and
rke

j�k = exk . Thus, under noisy conditions p̂k equals

krkk2
" 1

�
(1;2)
k

�
(1;2)
k �

(2;3)
k

#
�

2
4 �

(1;2)
k

�
(2;3)
k

�
(3;4)
k

�
(1;2)
k

�
(2;3)
k

�
(3;4)
k

�
(4;5)
k

�
(1;2)
k

�
(2;3)
k

�
(3;4)
k

�
(4;5)
k

�
(5;6)
k

3
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However because Pk = 1, the kth impinging source's Carte-
sian direction-cosine estimates, [ûk; v̂k; ŵk]

T , equal:" 1

�
(1;2)
k

�
(1;2)
k �

(2;3)
k

#
�

2
4 �

(1;2)
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(2;3)
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(3;4)
k

�
(1;2)
k �

(2;3)
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(3;4)
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(4;5)
k

�
(1;2)
k �

(2;3)
k �

(3;4)
k �

(4;5)
k �

(5;6)
k
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k

�
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(2;3)
k

#

2
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k �

(3;4)
k

�
(1;2)
k �

(2;3)
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(3;4)
k �

(4;5)
k

�
(1;2)
k �

(2;3)
k �

(3;4)
k �

(4;5)
k �

(5;6)
k
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Thus, the complex scalar ambiguity of rke
j�k in (14) causes

no ambiguity in the direction cosine estimates.

3.5. Azimuth & Elevation Angle Estimates

From the direction-cosine estimates derived above, the kth
signal's azimuth and elevation arrival angles can be esti-
mated as:

�̂k = sin�1
p

û2k + v̂2k = cos�1 ŵk

�̂k = tan�1
v̂k
ûk

Note that once the f�(j;j+1)k ; j = 1; : : : ; 5g are paired,
the azimuth and elevation estimates are also automatically
matched with no additional processing.
A basic calibration method and a simple remedy will also

be presented in the journal version of this work to illustrate
the possibility of modifying the foregoing algorithm to ac-
commodate electromagnetic vector-sensor mis-orientation.

4. SIMULATIONS

The simulation results presented in �gure 1 veri�es the
e�cacy of this novel close-form direction �nding al-
gorithm for arbitrarily spaced electromagnetic vector-
sensors at unknown locations. Two closely-spaced equal-
power uncorrelated narrowband sources impinge upon
a 13-element irregularly spaced three-dimensional ar-
ray of vector-sensors. This array may be considered
as a 9-element non-uniformly spaced cross-shaped ar-
ray with elements at the Cartesian coordinates �

2 �
f(0; 0; 0); (�1; 0; 0)(�2:7; 0; 0); (0;�1; 0); (0;�2:7; 0)g plus a
4-element square array with elements at the Cartesian co-
ordinates �

2 � f(�4;�4; 1)g. The two closely-spaced equal-
power uncorrelated narrowband sources have the follow-
ing parameter values: �1 = 30:93�; �1 = 37:09�, �2 =
50:08�; �2 = 39:71�. (that is, the �rst source has u1 = 0:41
and v1 = 0:31 and the second source has u2 = 0:59 and
v2 = 0:49.) The polarization states are 1 = 45�; �1 = 90�,
2 = 45�; �2 = �90�. The SNR is de�ned relative to each
source. 200 snapshots are used in each of the 500 indepen-
dent Monte Carlo simulation experiments.
The composite RMS standard deviation plotted is com-

puted by taking the square root of the mean of the respec-
tive samples variances of û and v̂. The estimation bias (not
shown) is about an order of magnitude smaller than the
estimation standard deviation and follows a similar trend.
Note that u2 � u1 = v1 � v2 = 0:18; thus, the two sources
would be resolved and identi�ed with high probability if
both the estimation standard deviation and the bias are
under approximately 0:05. The proposed ESPRIT-based

Figure 1: RMS standard deviation of fû; v̂g versus SNR.
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algorithm successfully resolves these closely-spaced sources
for all SNR's at or above �12 dB. Above these SNR res-
olution thresholds, estimation standard deviation and bias
both decrease fairly linearly with increasing SNR dB values.
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