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ABSTRACT

Amajor issue in space-time adaptive processing (STAP)
for airborne moving target indicator (MTI) radar is the
so-called sample support problem. Often, the available
sample support for estimating the interference covari-
ance matrix leads to severe rank de�ciency, thereby
precluding STAP beamforming based on the direct sam-
ple matrix inversion (SMI) method. The intrinsic in-
terference subspace removal (ISR) technique, which is
a computationally and analytically useful form of di-
agonally loaded SMI method, is derived here. It cov-
ers from Hung-Turner Projection (HTP) algorithm to
matched �lter according to the loading factor. Also
the optimum loading factor which gives the maximum
signal-to-interference-plus-noise ratio (SINR) is derived
here from the viewpoint of singular value decomposi-
tion of the covariance matrix. The simulation results
with synthetic data show that the maximum SINR in-
deed coincides with the proposed optimum loading fac-
tor in various data sample situations.

1. INTRODUCTION

Amajor issue in space-time adaptive processing (STAP)
for airborne moving target indicator (MTI) radar is the
so-called sample support problem. The returned space-
time snapshot signal may consist of a target echo and
interferences such as jammer, clutter and thermal noise
and can be represented as

xi = �tat + ci ; (1)

where �t and at are the complex attenuation factor
and target steering vector respectively associated with
the spatial and doppler parameters � and !d of the
moving target, and ci represents the total interference
signal. The output of a STAP beamformer, which is
the complex weighted sum of each snapshot element,
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is usually compared to a threshold to determine the
presence or absence of the moving target based on the
Neyman-Pearson criterion. In the point-doppler es-
timation problem, the optimum weight vector which
maximizes the output signal-to-interference-plus-noise
ratio (SINR)
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is given by [6, 5]
wo = R�1at (3)

where R = Efcc�g represents the interference covari-
ance matrix.

In actual practice, the interference covariance ma-
trix Rmust be estimated by making use of returns from
neighboring range bins to the point of interest. When k
independent and identically distributed (i.i.d.) samples
are available, the maximum-likelihood estimate (MLE)
of R is given by

R̂k =
1
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where xi represents the snapshot data for i-th neigh-
boring range bin, and Yk the total data matrix de�ned
by

Yk
4

= [x1 ; x2 ; � � � ; xk] : (5)

In that case, the direct sample matrix inversion (SMI)
weight vector can be represented as [5]

ŵo = R̂�1
k
at ; (6)

and the number of i.i.d. samples k required for the
above inversion must be greater than the dimension of
STAP (length of xi).

2. FAST DIAGONALLY LOADED SMI

ALGORITHM

With M and N representing the number of pulses in
a coherent processing interval (CPI) and antenna ele-
ments respectively, in general the number of samples k



should be greater than or at least equal to MN for R̂k

in (4) to be nonsingular (invertible). However, such a
large number of samples will introduce nonstationary
information, where the statistics are di�erent from that
around the target range bin and hence the MLE may
not converge. With a small number of samples, how-
ever, stationarity becomes more meaningful, but R̂k

does become singular. Many approaches are possible
to accommodate such a singular situation. In strong
interference cases, one of the simplest method is to add
a scaled version of the identity matrix producing diag-
onal loading [1]

R̂� = R̂k + �IMN =
1

k
YkY

�

k
+ �IMN ; (7)

where the small positive real number � is used mainly
for the invertability of R̂� : This imposes various inter-
esting questions: Is there an optimum value of � for
diagonal loading? Is it possible to eliminate diagonal
loading without essentially compromising the perfor-
mance? Surprisingly, as we show below, the answer to
these questions are both positive, and it o�ers a rea-
sonable solution when the number of samples are suf-
�ciently small compared to the size of the covariance
matrix.

To obtain the inverse of this positive de�nite matrix
R̂� in (7), the matrix inversion identity

[P�1 +MQ�1M�]�1 = P � PM [M�PM + Q]�1M�P

(8)
can be used by letting

P
4
=

1

�
IMN ; Q

4
= kIk and M

4
= Yk : (9)

This gives the loaded covariance matrix inverse to be
[3]

R̂�1
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=
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The scale factor 1

�
can be ignored since it doesn't e�ect

the intrinsic structure of the weight vector and hence
we obtain [3, 4]

w� = �R̂�1
�
at = �k(�)at ; (11)

where
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Note that (11){(12) has the same computational com-
plexity as the Hung-Turner Projection (HTP) method
that is known to be the simplest and fastest projection
algorithm [2]. Moreover, since

lim
�!0

w� = [IMN � Yk(Y
�

k Yk)
�1Y �k ]at (13)

and
lim
�!1

w� = at ; (14)

w� agrees that the Hung-Turner projection [2] for zero
diagonal loading. Similarly as � ! 1 ; w� also ap-
proaches the quiescent vector at that represents ordi-
nary beamforming. This raises an interesting question:
Is there an optimum � with respect to maximizing the
output SINR?

3. OPTIMUM LOADING FACTOR

The optimum positive real value for the diagonal load-
ing factor can be obtained in terms of the eigenvalues
of the estimated covariance matrix R̂k : Towards this,
let 1

R̂k =
MNX
i=1

�iviv
�

i (15)

represent the eigen decomposition of R̂k : It can be
shown that w� in (11) can be expressed as

w� = at �
MN�1X
i=1

ci(v
�

i at)vi : (16)

where

ci
4
=

�i � �MN

�i + �
: (17)

Because of the rank de�ciency of the clutter covariance
matrix, it is reasonable to assume (for high clutter-to-
noise ratio) that �r � �r+1 with r representing the
clutter subspace dimensionality [6]. Thus the clutter
subspace and the noise only subspace are assumed to be
spanned by fv1;v2; � � � ;vrg and fvr+1;vr+2; � � �vMNg
respectively. In the absence of imperfections (i.e., in
the exact nonsingular covariance case), (16) reduces to

wo = at �
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�
(v�i at)vi ; (18)

since in that case �i = �2 ; i � r + 1 : Obviously, the
optimally loaded scenario should try to simulate the
situation in (18), and hence ideally cr+1 = cr+2 = � � � =
cMN should equal zero. Since �r can be considered as
the smallest one among the eigenvalues in the clutter
subspace and �r+1 is the largest one among those in the
noise subspace, in a �nite sample situation the proper
loading factor should maximize cr and minimize cr+1
[4].

For the positive de�nite loaded matrix, the loading
factor should be larger than ��MN ; and accordingly,

1The upper limit in the summation in (15) will be MN if
k > MN : Otherwise, it will be k : In that case, �k+1 = �k+2 =
� � � = �MN = 0 :



the range of coe�cient ci is [0; 1) and ci = 0 only when
�i = �MN : Hence, the proper loading factor will make
cr approach unity and cr+1 to zero. De�ne the error
function by the summation of cr+1 and 1� cr ; i.e.,

fe(�)
4

= (1� cr) + cr+1 ; (19)

then we have
@fe(�)

@�

����
�=�o

= 0 (20)

at

�o = ��MN +
p
(�r � �MN )(�r+1 � �MN ) ; (21)

satisfying the minimum. Notice that �o always satis�es
�r < �o < �r+1 for small values of �MN :

Figs.1{3 show the output SINR vs. the loading fac-
tor normalized by the noise variance. In the simula-
tions, the number of pulses per CPI was chosen to be
16 (M = 16), the number of array elements to be 14
(N = 14). This gives the full degree of freedom covari-
ance matrix size to be 224� 224. Fig.1 corresponds to
the full rank case where k > MN , and Figs.2{3 are for
singular situations with k > r and k < r respectively.

Fig.1(a) shows the performance of loaded SMI in (7)
normalized by the direct SMI since the sample covari-
ance matrix is invertible in that case. (note that ISR
is not applicable here). Fig.1(b) shows the distribution
of eigenvalues �1 ! �224 ; and they span from 85 dB to
-5 dB. Notice that �33 ! �224 cluster together around
0 dB, indicating the noise subspace cuto� point, and
hence, we may choose the clutter subspace dimension
r in this case to be 32. The loading factor in (21) with
r = 32 corresponds to the region where the perfor-
mance is indeed maximum (dashed line in Figs.1(a){
(b)). Notice that peak point in Fig.1(a) falls between
�32 and �33 in Fig.1(b). Fig.2 corresponds to the sit-
uation where the number of samples is less than MN

and greater than the clutter subspace dimension r. In
this case �32 ! �80 cluster together in Fig.2(b), and
hence r is chosen to be 31 from the eigenvalue spread
in Fig.2(b). Since �MN = 0 in this case, the loading
factor is represented by (dashed line in Fig.2(b))

�o =
p
�r�r+1 : (22)

Once again from Figs.2(a){(b), performance is opti-
mum in this range (between �31 and �32).

Fig.3 corresponds to a severely undersampled case
with k = 10 ; the number of samples being less than
the actual rank of the clutter subspace. In this case,
since �MN = �r = �r+1 = 0 ; we have �o = 0 that
corresponding to the Hung-Turner projection method,
and peak performance is indeed attained for that value.
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Figure 1: Full rank situation with k = 300 (> MN ):
(a) Output SINR normalized by SMI vs. loading factor
normalized by the noise power. The dotted lines show
20 independent simulations and the solid line their av-
erage. The vertical dashed line is the estimated op-
timum loading factor when r = 32 : (b) Normalized
eigenvalue spread of the sample covariance matrix.

4. CONCLUSION

If the available number of data samples is less than the
size of covariance matrix, the diagonal loaded situation
covers from Hung-Turner projection to the quiescent
weight vector according to the loading factor, and the
optimum loading factor which maximizes the output
SINR is derived and applied to the clutter situation.
When the number of samples is less than the clutter
subspace dimension r, the optimum loading factor is
shown to be zero and corresponds to the Hung-Turner
projection method. Otherwise when r < k < MN ; the
optimum loading factor lies between the smallest clut-
ter subspace eigenvalue and the largest noise subspace
eigenvalue and it maximizes the output SINR.
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Figure 2: Singular case with k = 80 (r < k < MN ): (a)
Output SINR normalized by HTP vs. loading factors
normalized by the noise power. The dotted lines show
20 independent simulations and the solid line their av-
erage. The vertical dashed line is the estimated op-
timum loading factor when r = 31 : (b) Normalized
eigenvalue spread of the sample covariance matrix.
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