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ABSTRACT

Amajor issue in space-time adaptive processing (STAP)
for airborne moving target indicator (MTI) radar is the
so-called sample support problem. Often, the available
sample support for estimating the interference covari-
ance matrix leads to severe rank de�ciency, thereby
precluding STAP beamforming based on the direct sam-
ple matrix inversion (SMI) method. The intrinsic in-
terference subspace removal (ISR) technique, which is
a computationally useful form of diagonally loaded SMI
method, can handle this case, although the performance
is poor in low sample situations. In this context, new
subarray-subpulse schemes using forward and backward
data vectors are introduced to overcome the data de-
�ciency problem. It is shown here that multiplicative
improvement in data samples can be obtained at the
expense of negligible loss in space-time aperture of the
steering vector.

1. INTRODUCTION

Amajor issue in space-time adaptive processing (STAP)
for airborne moving target indicator (MTI) radar is the
sample support problem. In this context, consider the
radar scenario where the returned space-time snapshot
signal may consist of a target echo and interferences
such as jammer, clutter and thermal noise given by

xi = �tat + ci ; (1)

where �t and at
4
= a(�t; !dt) are the complex attenu-

ation factor and target steering vector respectively as-
sociated with the spatial and doppler parameters �t
and !dt of the moving target, and ci represents the
total interference signal. Here xi 2 CMN represents
the concatenated space-time data vector formed from
the array output vectors corresponding to the M pulse
returns in a coherent processing interval (CPI) with in-
terpulse interval T . Thus using N antenna elements, if
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xk(ti) represents the k-th sensor output at t = ti ; then

x(ti)
4
= [x1(ti); x2(ti); � � � ; xN(ti)] (2)

and

xi
4

= [x(ti);x(ti + T ); � � � ;x(ti + (M � 1)T )]T (3)

represent the array output and space-time snapshot
data vectors, respectively. In the point-doppler estima-
tion problem the optimumweight vector wo is given by
[4]

wo = R�1at ; (4)

where R = Efcic
�

i g is the total interference matrix.
For a uniform linear array with interelement spacing
equal to d ; the spatio-temporal steering vector can be

expressed as at = a(�; !d)
4

= bM (!d) 
 aN (�) ; where

 represents the Kronecker product, and [4]

aN (�)
4

=
h
1; e�j�d sin �; � � � ; e�j(N�1)�d sin �

iT
(5)

bM(!d)
4
=
h
1; e�j2�!d ; � � � ; e�j2�(M�1)!d

iT
(6)

represent the spatial and temporal \steering vectors"
respectively. Thus if the interference signal is assumed
to be returns from a large number of independent scat-
terers, then

ci =
KX
k=1

�k(i)bM (!dk) 
 aN (�k) + ni (7)

and the total interference covariance matrix has the
form

R =
KX
k=1

Pkaka
�

k + �2IMN ; (8)

where ak
4
= bM (!dk)
aN (�k); and IMN represents the

identity matrix of size MN �MN: Notice that clutter



doppler !k is linearly dependent on the bin location az-
imuth parameter sin �k [4]. Here ni represents thermal
noise that is assumed to be uncorrelated and identi-
cally distributed among sensors and pulses. In actual
practice, the interference covariance matrix R must be
estimated by making use of the returns from neighbor-
ing range bins to the point of interest. This is most
commonly accomplished with the formation of a sam-
ple covariance estimate given by

R̂ =
1

k

kX
j=1

xjx
�

j =
1

k
YkY

�

k ; (9)

where

Yk
4

= [x1;x2; � � � ;xk] : (10)

Unfortunately, for the above procedure to work it is
necessary to assume stationarity of the clutter over all
range bins used in (9). Moreover since the size of R
is large, (9) requires a very large number of range bins

(k > MN ) to guarantee a good estimate R̂ that is non-
singular, and that much data may not be available in
practice. Thus nonstationarity of the clutter together
with insu�cient data support to obtain nonsingular es-
timates makes the problem of clutter covariance matrix
estimation open to other considerations.

Alternatively, since the optimal weight vector in (4)
can be expressed as the net quiescent steering vector at
that is free of all clutter subspace components, it has
been shown that this idea can be implemented implic-
itly also in the sample starved situation by making use
of the Hung-Turner projection [2, 3]. In fact with

�k = IMN � Yk(Y
�

k Yk)
�1Y �k ; (11)

the weight vector

wISR = �kat (12)

retains the same structural properties of the optimal
weight vector in (4) [3], and its performance in terms
of SINR is optimum when the number of data samples
used are equal to [1, 5]

kopt =
p
(MN + 1)r � 1 : (13)

For example, for a 14 element array with 16 pulses,
(13) gives the number of desired samples in this case to
be about 80, (see Fig.1 traditional forward-only curve)
provided we assume the clutter subspace rank r to be
about 30 as in the Mountain-top data set [4]. Thus
in this case, for peak performance we need about 80
samples, and it is desirable that this requirement on
data samples be relaxed.

2. FORWARD/BACKWARD
SUBSTRUCTURE METHODS FOR
EXTENDED SAMPLE SUPPORT

2.1. Temporal Subpulse Method

The small sample size problem can be overcome to a
great extent by exploiting the space-time structure of

the steering vector together with the uncorrelated na-
ture of the components of the interference covariance

matrix. Towards this, let xfi;j represent the j-th for-
ward subvector generated using J consecutive pulses
in (3); Thus, for j = 1; 2; � � �;M � J + 1, de�ne

xfi;j
4
= [x(ti + (j � 1)T ) ; x(ti + jT ) ; � � �

� � � ; x(ti + (j + J � 1)T )]T : (14)

It is easy to show that the covariance matrix of the
subvector in (14) can be expressed as

Rf
p =

KX
k=1

Pkap(k)a
�

p(k) ; (15)

where ap(k)
4
= bJ (!dk) 
 aN (�k) with bJ(!dk ) repre-

senting the top J � 1 subvector of bM(!dk ) : Notice
that in an uncorrelated interference scene Rf

p is inde-
pendent of j and i, so that the data vectors in (14) can
be separately used to generate the sample data matrix.
Thus with

Y
f
j

4
= [xf1;j;x

f
2;j; � � � ;x

f
k;j] ; (16)

we have the extended data matrix

Y f = [Y f
1 ; Y

f
2 ; � � � ; Y

f
M�J+1] : (17)

Notice that although Y f corresponds to only J pulses,
it has an e�ective sample support size of (M �J +1)k,
which could be large compared to k.

The uncorrelated nature of the interference data to-
gether with the uniform array can be further exploited
to generate backward data matrices. Towards this,
let xbi;j represent the complex conjugated and reversed
data vector in (14). Then with the backward data vec-
tor

xb(ti)
4
= [x�N (ti); x

�

N�1(ti); � � � ; x
�

1(ti)] ; (18)

we have

xbi;j =
�
xb(ti + (j + J � 1)T ) ; � � � ;

� � � ; xb(ti + jT ) ; xb(ti + (j � 1)T )
�T

: (19)

Once again, exploiting the uncorrelated nature of the
scatterers it is easy to see that the covariance matrix
Rb
p for (19) has the same form as in (15) and hence, we

may de�ne Y b as in (16){(17). Thus

Y b = [Y b
1 ; Y

b
2 ; � � �Y

b
M�J+1] ; (20)

where Y b
j = [xb1;j;x

b
2;j; � � � ;x

b
k;j] : Finally

Y f=b
p = [Y f jY b] (21)

gives the generalized forward/backward expanded data
matrix of size JM�2(M�J+1)k ; each column of which



have the same ensemble averaged covariance matrix.

Notice that the e�ective sample size in Y
f=b
p has gone

up by a factor of 2(M � J + 1) ; whereas the e�ective
pulse length has been reduced from M to J . Thus,
for example, if J is chosen to be M � 1, the number
of pulses are reduced by unity, whereas the e�ective
data goes up by a factor of four! This is a remarkable
achievement considering that the performance degrada-
tion in the doppler domain due to loss of one pulse, is
insigni�cant compared to the sample data improvement
factor of four. Fig.1 shows the results of simulation us-
ing the proposed subpulse method with J =M �1, for
the f/b case in terms of the SINR loss with details as
shown there. Notice that with J = M�1, e�ective data
goes up by a factor of four, and the peak performance
is attained with 20 actual samples. The multiplication
factor of four makes the e�ective number of samples to
be 80 and this is consistent with the discussion that
follows (13).

2.2. Spatial Subarray Method

Alternatively, the freedom present in the spatial do-
main can be explored to de�ne similar forward and
backward subvectors. Towards this, let

zfl (ti) = [xl(ti); xl+1(ti); � � � ; xl+L�1(ti)] ;

l = 1! N � L + 1 (22)

represent the l-th forward subarray of size L generated
from the spatial vector x(ti) in (2). Next de�ne

zfi;l =
h
zfl (ti); z

f
l (ti + T ); � � � ; zfl (ti + (M � 1)T )

iT

l = 1! N � L + 1 ; i = 1! k (23)

to be the concatenated data vector fromM such pulses.

Notice that zfi;l is of size ML � 1 ; and its covariance
matrix can be expressed as

Rf
s =

KX
k=1

Pkas(k)a
�

s(k) ; (24)

as(k)
4

= bM(!dk )
 aL(�k) (25)

with aL(�k) representing the top L � 1 subvector of
aN (�k). Rf

s is also independent of l and i, implying
that every data vector in (23) has the same covariance
matrix. Once again proceeding as in the previous sec-
tion, it can be shown that

Y f=b
s = [Zf jZb] (26)

represents the \extended" data vector set in this case.
Here Zf = [Zf

1 ; Z
f
2 ; � � � ; Z

f
N�L+1] and Zb = [Zb

1; Z
b
2;

� � � ; Zb
N�L+1] with Z

f
l = [zf1;l; z

f
2;l; � � � ; z

f
k;l], l = 1 !

N � L + 1 ; and Zb
l = [zb1;l; z

b
2;l; � � � ; z

b
k;l] and zbi;l =

Jo(z
f
i;l)

� ; where Jo represents the exchange matrix of

sizeML�ML. Notice that Y f=b
s contains 2(N�L+1)k

samples, although the array aperture only corresponds
to L sensors. Thus, for example, if L is chosen to be
N � 1, then e�ective number of samples can be in-
creased by a factor of four, whereas the antenna size
gets reduced by one sensor element only. Once again
this improvement in performance by a multiplication
factor is very signi�cant.

The temporal and spatial freedom present in the
space-time data vector can be exploited simultaneously
to even greater advantage in the data domain.

2.3. Subpulse-Subarray Method

To simultaneously exploit the spatial and temporal char-
acteristics, with the l-th subarray as de�ned in (22),
consider J such consecutive subarray vectors concate-
nated together to generate

wf
l;j (i) =

h
zfl (ti + (j � 1)T ); zfl (ti + jT ); � � �

� � � ; zfl (ti + (j + J � 1)T )
iT

;

l = 1! N � L+ 1 and j = 1!M � J + 1 : (27)

wf
l;j(i) is of size JL � 1, and represent forward-data

vectors. It is easy to show that the covariance matrix
of the data vector in (27) can be expressed as

Rf
p;s

4
=

kX
k=1

Pkap;s(k)a
�

p;s(k) (28)

where

ap;s(k)
4
= bJ(!dk )
 aL(�k) : (29)

Notice that (28) is independent of l; j and i, implying
that all these data vectors have the same covariance
matrix, and hence they may all be used in their esti-
mation. Obviously the extension to the backward data
case can be done in a similar manner. Thus proceeding
as before, we obtain the total data matrix

Y f=b
p;s = [W f jW b] ; (30)

where W f = [W f
1;1;W

f
1;2; � � � ;W

f
(M�J+1);(N�L+1)] with

W
f
i;j = [wf

i;j(1);w
f
i;j(2); � � � ;w

f
i;j(k)] and W b = [W b

1;1;

W b
1;2; � � � ;W

b
(M�J+1);(N�L+1)];whereW

b
i;j = Jo

�
W

f
i;j

��
.

Notice that Y
f=b
p;s has 2(M �J+1)(N �L+1)k column

vector each of size JL�1 : Thus the e�ective data sam-
ples has increased by a factor of 2(M�J+1)(N�L+1),
whereas the steering vector size has been reduced to
JL� 1 :

Fig.1 also shows the results of simulation for the
SINR loss using the subpulse-subarray method with
J = M � 1 and L = N � 1 for the forward only as
well as the forward/backward case. The e�ective data



in this case goes up by a factor of 8 for the f/b case,
and in fact as the solid curve in Fig.1 shows, ten actual
samples are able to achieve the peak performance in the
forward/backward case. Once again this is consistent
with (13).

Fig.2 refers to the adaptive matched �lter output
for target detection for the forward-only as well as the
f/b case. Comparisons are made between the tradi-
tional case (no subarrays or subpulses) and the sub-
pulse case discussed in section 2.1. From Fig.1, since
twenty actual samples realize peak performance in the
f/b subpulse case, they are used to generate the corre-
sponding weight vector and the output amplitude re-
sponse jw�xj : Notice that with 20 samples, only the
generalized f/b subpulse case is able to detect the tar-
get (buried 50 dB below the clutter level and 10 dB
above the noise oor) in an unambiguous fashion.

3. CONCLUSIONS

To overcome the small sample support problem in space-
time adaptive processing in nonstationary environments,
a generalized subaperture-subpulse method is introduced
together with forward/backward processing. The struc-
ture of the actual space-time steering vector as well
as the total interference covariance matrix plays a key
role, and they are exploited to generate e�ective addi-
tional data vectors of reduced size. However the mul-
tiplicative performance gain in the available number
of data vectors far outweighs the space-time aperture
loss, and simulation results using actual mountain top
data are presented to illustrate the usefulness of the
proposed method. In essence, multiplicative improve-
ment in data samples can be obtained at the expense
of negligible loss in space-time aperture of the steering
vector. This is rather remarkable considering that the
aperture loss is only linear, whereas the sample support
improvement is multiplicative by almost an order even
in the simplest situation of this algorithm.

4. REFERENCES

[1] Gierull, C.H., \Performance Analysis of Fast Pro-
jections of the Hung-Turner Type for Adaptive
Beamforming", Signal Processing, vol. 50, 1996.

[2] Hung, E.K.L., and Turner, R.M., \A Fast Beam-
forming Algorithm for Large Arrays", IEEE
Transactions on Aerospace and Electronic Sys-
tems, vol. 19, no. 4, July 1983.

[3] Pillai, S.U., and Kim, Y.L., and Guerci, J.R.,
\New Techniques for Minimal Sample Support
Space-Time Adaptive Radar", Under preparation.

[4] Ward, J., \Space-Time Adaptive Processing",
Technical Report 1015, MIT Lincoln Laboratory,
Lexington, MA, December 1994.

[5] Zatman, M., \Properties of Hung-Turner Pro-
jections and their Relationship to the Eigencan-
celler", IEEE 30th Asilomar Conference on Sig-
nals, Systems and Computers, Paci�c Grove, CA
1996.

Traditional (forward only)
Traditional f/b           

Subarray−Subpulse f/b     
Subpulse f/b              

0 10 20 30 40 50 60 70 80 90 100
−60

−50

−40

−30

−20

−10

0

Number of Samples
S

IN
R

 L
o

ss
 (

d
B

)

Figure 1: Forward/backward subpulse only and
subarray-subpulse techniques for sample starved STAP.
Two subvectors using �fteen consecutive pulses are gen-
erated in both forward and backward case.
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Figure 2: Subpulse vs Traditional Approach: Adap-
tive matched �lter output for target detection. Twenty
actual number of samples are used in this case (see
Fig.1). Results of 100 independent simulation averages
are shown here.


