
ABSTRACT

Digital signal processors are paired with microcontrollers in many
applications. Various attempts have been made to combine the two
processor functions in one architecture, but there have remained
two unresolved conflicts. These are different data and program
memory hierarchy choices in speed and size, and different real-time
control needs. This paper reviews the basic processing requirements
for digital signal processing (DSP) and controllers and shows how
a new 32-bit RISC architecture has resolved these conflicts and suc-
cessfully integrated the two functions seamlessly into one processor
core. This is confirmed with a detailed FIR filter example. Major in-
novations in this TriCore architecture are a novel memory organiza-
tion used along with variable instruction word sizes and multiple is-
suing of instructions. 

INTRODUCTION
Most systems that utilize digital signal processing (DSP) in their
operation also have digital control processing requirements. Histor-
ically the signal processing has been done by a separate digital sig-
nal processor as a peripheral to a microcontroller with each being
the more cost effective for its portion of the digital processing. They
were natural partners with neither doing the other’s task well. How-
ever, now all of the forces normal for the semiconductor industry
are at work to encourage the integration of the DSP functionality
with the microcontroller: lower power, smaller size and lower cost
through smaller combined die size, less packaging costs and less
testing costs. 

Common Architectural Trends 

In the course of serving their natural application markets, DSP and
control processors have pursued some common techniques in their
architectures. DSP functions are becoming more data dependent as
nonlinear coding methods are used so that a full set of conditional
bit operations are required in modern digital signal processors. Pro-
grams are larger with more control so high-level language support
and context switching assists have been added. Thus larger memo-
ries of different types are needed and caches are starting to be used.

As controller’s performance requirements have increased, their pro-
cessors have moved more to Harvard (separate data and instruction
memories) structures like the signal processor and to RISC from
CISC. Higher and mixed precisions are more fully supported in
basic hardware with SIMD (Single Instruction Multiple Data) par-
allel operations being used more frequently as with signal proces-
sors. Superscalar multiple issuing of instructions is more common.

In these ways control and signal processors have grown closer even
without an attempt at integration, but there have also been deliber-
ate attempts to integrate them [1]. DSP data arithmetic requirements
can be added easily to a controller including even the multiply-
accumulate function. Likewise, DSP data structures and program
looping come at small cost in structures that are already Harvard
organizations [2]. Initial blends have, however, been relatively inef-
ficient integrations with the DSP capability being an add-on to an
existing successful microcontroller [4]. The result is often more like
a co-processor with a high duplication of functions and large com-

plex instruction sets. As a result potential cost, power and ease of
programming benefits are never fully realized.

Different Natures Of Signal and Control Processing

Digital signal processing is distinctly different from control pro-
cessing and general purpose computing in four broad areas: data
arithmetic, data structures, real-time control and program control.

DSP data structures are often vectors or even matrices where oper-
ations are, in effect, vector operations which require two operands.
The vectors are often long so register files are not large enough and
data caches are always a miss. Thus, large fast dual memories with
elaborate dual address generators are the norm. Addresses are com-
monly data derived for table lookup or numerically complex like
the bit-reverse of the fast Fourier transform (FFT).

Real-time control is critical in DSP because it keeps the data being
processed and not backing up. This control is usually deterministic
being related to the sample rate as opposed to random events and is
typically data independent. Loss of real-time synchronization or
data coherence is not tolerated, DSP control must be predictable.

Program control in DSP is oriented towards fast execution of tight
loops of code: repeat instructions, zero-overhead looping and small
instruction cache sizes with relatively primitive update strategies
that can work. Nesting of loops may be important and stacks helpful
but contexts seldom change, branching is rarely complex and
although the benefits of high-level languages are sought, most pro-
grams are still developed in assembly language.

Control processors use more conventional arithmetic with often the
only enhancements being for bit operations and character string
processing. Data structures are small so RISC register files can
work well. Precisions and data types vary and compact data storage
is important but the normal byte boundaries are adequate. Control
processing tends to be intolerant of even a single data inaccuracy so
memory protection and fail-safe service routines may be important.

Real-time control is a controllers primary task: they respond to
more nearly random, non-deterministic inputs, their operation is
highly data dependent and there may be many discrete contexts due
to multiple interrupts, traps and operating modes. Control timing is
usually less critical than DSP in absolute time tolerance, but the pri-
ority and hierarchy of control is much more complex. Program con-
trol must accommodate larger programs due to wider use of high-
level languages in controller applications and for the more complex
tasks. Large slower memories make caches more necessary and
they must be larger than for DSP. Compact instruction sets help to
reduce program memory size and cost.

Previously Unresolved Conflicts

Current attempts at integrating DSP capability into controllers have
resulted in certain compromises, but many of the additional require-
ments of DSP have been met by just adding them in. However, there
are two requirements for DSP that have conflicted with controller
requirements. The conflicts have not been resolved and the control-
ler requirements have prevailed. The conflicts are in the areas of the
memory organization, speeds and sizes and in the real-time control
requirements. 

Most DSP continuously needs fast data memory that is larger than

A RISC ARCHITECTURE WITH UNCOMPROMISED DIGITAL SIGNAL 
PROCESSING AND MICROCONTROLLER OPERATION

Daniel Martin Robert E. Owen

Siemens Microelectronics, Inc. Data/Time International
10950 North Tantau Avenue 19348 Columbine Court

Cupertino, California US-95014 Saratoga, California US-95070-4039



a register file. Also instruction memory must be fast, continuously
available and wide enough to support the parallel processing
required for DSP. These both conflict with the low-cost require-
ment for controllers where the need for both memories to be large
can be traded-off for lower cost by using slower, on-the-average-
available DRAMs. The result is that existing microcontrollers with
DSP capability operate substantially below their expected perfor-
mance because of the overheads of memory swapping. 

However, the largest single factor that has kept signal processing
being done on separate processors is the need to maintain the nec-
essary temporal integrity for real-time DSP. Unless a conventional
microcontroller can prove by design that it can deterministically be
responsive with the processing power needed for the DSP portion
of the task, it will always have to work far below optimum usage
just to assure that it is statistically safe. 

THE TRICORE ARCHITECTURE
Figure 1 illustrates the first implementation of the TriCore architec-
ture that meets the processing requirements without compromise
for both DSP and control while giving all of the benefits of integra-
tion [3]. Shown to the left of the FPI bus in the figure are the actual
bus sizes and execution model of this initial core. Memory sizes and
types shown are for the standard product but these are selectable
along with a wide choice of peripherals in the normal configurable
product.

The three arithmetic units (multiply-accumulate, arithmetic-logic
and bit-manipulation) operating out of the 16 x 32-bit multiport reg-

ister file do meet all of the combined data arithmetic requirements.
A 64-bit data SRAM can do two full 32-bit word load/store opera-
tions with the register file simultaneous with data operations requir-
ing three reads and two writes. The data SRAM is used for data
caching, as a data scratch pad or for four-words-per-cycle context
switches for both data and address register files. A larger internal 8k
x 64-bit data DRAM with two word transfers and the single-word
transfer external memory complete the data memory hierarchy. All
share the 32-bit address space of the address generator that meets
the combined complex data structure and memory protection needs.

Most data and address processing can be accomplished with 16-bit
instructions sequentially, but 32-bit instructions can be used when
processing, data constants or address ranges required them. Instruc-
tions can be dual issued when the highest concurrent processing is
required because of the 64-bit path to the 256 x 64-bit instruction
cache and scratch pad SRAM. Main internal instruction memory is
a 16k x 32-bit DRAM that can be augmented with external memo-
ries on the FPI bus. All share the program control 32-bit instruction
address space for large programs. This control has a full set of zero-
overhead, nesting and memory protection functions. Program space
overlaps the data address space for external memories.

A large prioritized vectored interrupt structure and hardware and
software traps complement the fast context switching and three per-
mission levels for easily maintained and rapid task control. Two
contexts can, in effect, be resident within the split register files.
Additions contexts are stacked within the data SRAM and aligned
with the wide memory bus for fast saving and restoring.

Data DRAM

LD/ST OpData Op

MAC 

64

64
128

ALU BMU 

 Data SRAM

Register 
File

16 x 32

Load/Store 
Address

Arithmetic

Program 
Control

Data 
Memories

Data 
Arithmetic

Instruction 
Memories

Co-processor

Instruction
SRAM

 Instruction 
DRAM

DATA

External 
DRAM

External 
ROM

Multiple 
Processors

I/O

Program 
Counter

ADDR

FPI Bus

8k x 64 Bits

Cache/Scratch Pad/Contexts
512 x 64 Bits

256 x 64-Bit Cache/Scratch Pad

16k x 32 Bits

Instruction Register

16/32

32

64

32

64

64

64

Data
Structures

Addressing
32

32

128

64

16/32

32

32

128 128
64 64

Register 
File

16 x 32

DATA

ADDR

32

32

32

Real-Time/ 
Program Control

Interrupts

Figure 1. The First Implementation Of The TriCore Architecture



All of these architectural features provide the RISC-like structure to
support efficient C and C++ language compilers without compro-
mise to the processing speed possible for DSP applications. Figures
2A and 2B illustrate the same core architecture redrawn to empha-
size its operation for DSP and control operations. For DSP in 2A,
32-bit data operation instructions keep all three arithmetic units
busy operating on the register file data that is simultaneously
updated from complex data structures in data SRAM maintained by
the 32-bit load/store operation instructions. The instruction SRAM
holds 256 of these 64-bit instruction pairs which is adequate for the
tight inner loops, while the data SRAM holds 2048 data words at the
common DSP precision of 16-bits. 

For control in Figure 2B, sequential 16-bit data and load/store
instructions are sufficient for microcontroller performance with the
bit-manipulation and arithmetic-logic units. The data and instruc-
tion SRAMs are more likely to function as caches for the larger
associated DRAMs needed for large control programs. The data
SRAM acts as a context scratch pad for rapid saving of both data
and address register file contents. Note that these separately drawn
architectures exist simultaneously without any mode switching,
being determined only by the instruction flow.

Conflicts Resolved

The specific implementation in Figure 1, coupled with the config-
urability of the broader TriCore product line illustrate how the
seemingly conflicting memory hierarchy requirements were
resolved. First in the data memory hierarchy. The large directly-
addressable data register file meets compiler needs and provides the
small instruction benefit for both types of processing. Yet the wide,
fast and transparent load/stores with the moderate sized scratch pad
SRAM gives the larger fast memory with more complex addressing
needed for DSP. This comes with an expansion of the instruction
width with dual issuing only when specified by the program. And
finally the slower, lower cost but denser DRAM meets the large
data memory requirements of controllers and yet remains fast, due
to wide transfers, and flexible for DSP use. Even external data
memory maintains the flexible addressing along with the directly
addressable I/O. All the data memory hierarchy benefits too from
the data packing of bytes and half-words within the 32-bit full word

and the SIMD operations of the arithmetic units.

Next is the instruction memory hierarchy. Here a wide, moderate
size instruction SRAM meets the speed needs of DSP without high
cost, while the larger program needs of controllers are met with a
less costly internal DRAM and external memories. Instruction
memory efficiency remains high without speed penalties because of
the choice of 16- or 32-bit instructions, dual issuing and SIMD
operations.

Both memory hierarchies can be further refined for a particular
class of applications by altering the memory sizes and types. This is
because of the large unified address spaces and the broad choice of
memory technologies available from Siemens. Dense, high-speed
non-volatile ROMs can be added anywhere as can flash EPROMs.

There is no inherent conflict between the DSP need for fast deter-
ministic responses and the controller need for complex processing
responses to a large variety of random events of varying impor-
tance. There is a choice of features in this architecture to insure
speed of response, speed of resolution and availability of resources
for DSP. They overlap in their effect on those three important real-
time factors.

Vectored interrupts reduce response and resolution times and even
dual issuing reduces response latency. Interrupt resolution times are
more predictable and reduced by the large number of priority levels
and the existence of non-maskable interrupts. The two sizes of con-
text switching available, using the fast save/restore with the wide
data SRAM, also assure fast interrupt and trap response, resolution
and availability of resources in the correct context. Three levels of
permission assure processing resources are used for time-critical
program execution. Software set-able traps can provide rapid
dynamic control of the system’s real-time response. The processor
priority level itself is dynamically adjustable. Conditional execu-
tion of code can be used to insure that execution times are consis-
tent. 

COMPREHENSIVE EXAMPLE

Successful integration of DSP capability in the architecture can be
confirmed by looking at a typical programmed DSP example, the

LD/ST OpData Op

MAC ALU BMU 

 Data SRAM

Data 
Register File

16 x 32

Load/Store 
Address

Arithmetic

Instruction
SRAM 256 x 64-Bit

Instruction Register

32

64

64

32

Address 
Register File

16 x 32

32

LD/ST Op

Data Op

ALU BMU 

 Data SRAM

Data 
Register File

16 x 32

Load/Store 
Address

Arithmetic

Instruction
SRAM

Cache/Context Scratch Pad 
512 x 64 Bits

256 x 64-Bit Cache

Instruction Register

16

64 64

16

Address 
Register File

16 x 32

32

Contexts

512 x 64 Bits

Figure 2. The Architecture In Effect For DSP Operations (A.) And Control Operations (B.)

A. DSP Operations B. Control Operations



FIR filter. A FIR (finite-impulse-response) filter is a continuing
computation over time of the form:

where N is the number of multiply-accumulates or filter taps on the
uniformly sampled data points with the index t. This computation is
mapped onto the new architecture in Figure 3, where the details of
the MAC arithmetic unit are also shown. This is for the common
case of where input and output data and coefficients are all 16 bits
with 32-bit products being accumulated in a 64-bit register.

If the input data and coefficients are ordered in the data register file
as shown in Figure 3, then four 16 x 16-bit multiply-adds can be
done in two instruction cycles with two maddm.h instructions.
Simultaneously the 64-bits of input data and coefficients can be
updated with loads from the data memory. If N is even and less than
256, then the input data and coefficients can all reside in the data
SRAM in the first implementation with the ordering as shown. Pro-

cessing time without I/O is 7 + N/2 instruction
cycles. With the target 100-MHz instruction
rate and allowing for I/O, the real-time band-
width can be 5 MHz for a 20-tap non-symmetri-
cal FIR filter.

This example illustrates specifically how the
high performance is a direct result of features in
the new architecture. First the partitioning of the
multiplier-accumulator into a dual MAC for 16-
bits doubles the rate for this, the most common,
DSP precision. The MACs operate with con-
ventional signed fractional data formats that sat-
urate properly without an unnecessary loss of
precision to cover the -1 times -1 possibility.
The double-precision 64-bit accumulation takes
no additional cycles because of the wide data
buses and dual register addressing. The dual
issuing allows the simultaneous loading of the
register file with the ongoing MAC operations
for the small inner-loop instructions that are
cache resident, yet only a 32-bit main instruc-
tion memory is needed. The instruction loop
counting and comparison takes no additional
cycles.

The double-word data path between the data
memory and the register file allows the use of
smaller, less costly single-port data memories,
including DRAM. The memories are addressed
by alternating counters that are self increment-
ing by variable amounts and invisibly maintain
a circular buffer. The addressing supports com-
pact use of data memory for a smaller than full
word precision. The Input/Output operation is
flexible with a variety of format and precision
options either in on-chip memories or external
32-bit I/O, all of which appear in the same direct
address space.

As can be seen from the techniques used, this
high performance is broadly useful for DSP and
not just for this special case or set of parameters.
Performance decreases only gradually with
using the larger on-chip data DRAM rather than
SRAM. Even use of external RAM can be a
penalty of a factor of only two. With byte
addressing and the full range of shifting and
sign-extension capabilities it is easy to use dif-
ferent precisions for saving memory space.
Higher precisions impose small penalties gener-
ally because of the wide data bus structure. For

example, in the FIR filter if the precision is
expanded to 32 x 32 bits with 64-bit accumulation the data organi-
zation remains the same as Figure 3 where a new n equals the old n,
n+1. The speed is reduced by a factor of only two because it takes
four maddm instructions to accomplish the four MAC operations.

REFERENCES
[1] D. Bursky, “Merged Embedded Controller And DSP 

Designs Simplify Systems”, Electronic Design, Vol. 45, 
No. 21, pp. 69-80, 1 October 1997.

[2] K. Nadehara, M. Hayashida, I. Kuroda, “A Low-Power, 32-
bit RISC Processor With Signal Processing Capability”, 
VLSI Signal Processing, VIII, pp. 51-60, IEEE, 1995.

[3] “ TriCore Architecture Manual”, Siemens Microelectron-
ics, Inc., 1997. Order Number: M32T011.

[4] D. Walsh, “Piccolo - The ARM Architecture for Signal Pro-
cessing: An Innovative Architecture for Unified DSP and 
Microcontroller Processing”, Proc. ICSPAT96, Vol. 1, pp. 
658-663, 1996.

Figure 3. Data Memory And Data And Address Register File Organization 
For A 16 x 16-bit FIR Filter With 64-bit Accumulation

1616

32

1616

32

3232

32

32

64

Data
Structures

Addressing

64128

Data n+2,3

Coef n, n+1 Coef n+2,3

Data n, n+1

Data N-2,1 Data N-4,3

Data 2,3

Coef N-2,1Coef N-4,3

Coef 2,3Coef 0,1

64

Data 0,1

Length N
Coef Addr

32

Load/Store 
Address

Arithmetic

Instruction Cache

16 16

16

1616

16

Loop 
Count 

n

Instruction Register

Address
Register File

Data Register 
File

Data SRAM

ADDR

64

 Count n

Data Addr

a0a1

a2a3

d0

d2

d1

d3

d5 d4

OutData DRAM 
or I/O (32-bit)

64

32

Data 
Arithmetic 
MAC

Accumulation

LD/ST OperationData Operation

maddm.h d0/d1,d0/d1,d3,d4

maddm.h d0/d1,d0/d1,d2,d5 ld.d d4/d5,[a1+] 8

ld.d d2/d3,[a2/a3+c] 8


