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ABSTRACT

Tripulse is a novel orientation/attitude estimation sys-
tem that is designed to accurately estimate the ori-
entation of a satellite borne phased array relative to
one or more earth stations. This system has an ac-
curacy potential that is signi�cantly better than con-
ventional Earth-Moon-Sun attitude sensors. Tripulse
has conceptual similarities to amplitude comparison
monopulse systems used in tracking radars. Detailed
Tripulse statistical performance analyses for noise, beam-
forming quantization errors, and hardware failures are
presented.

I. INTRODUCTION

This work describes a novel orientation estimation sys-
tem called Tripulse that is designed to accurately esti-
mate the orientation and attitude of a satellite borne
phased array relative to one or more earth stations.

An active phased array antenna communication satel-
lite system can require a higher degree of pointing ac-
curacy than that which can be obtained using Earth-
Moon and Sun sensors. Accurate attitude determi-
nation is an important factor in issues of delivering
maximum signal power (equivalent isotropic radiated
power { EIRP) to localized areas, and also to allow for
maximum frequency reuse with minimal interference.
Earth-Moon-Sun sensor systems typically provide an
attitude accuracy of� 0:1 deg :This work demonstrates
that a Tripulse system can maintain a speci�cation ac-
curacy of � 0:01 deg : over normal 15 year lifetimes of
a communications satellite.

II. BACKGROUND

The Tripulse system is conceptually similar to am-
plitude comparison monopulse systems used in track-
ing radars, see for example, Dunn et al [1]. Our array
model consists of individual active elements that can
be assigned a distinct amplitude and phase. In gen-
eral, the array geometry is quite exible. In this work
we consider a square array antenna with N2 elements.
The origin of the coordinate system is taken at the
center of the array. The x; y axes lie in the plane of
the array passing through the center of symmetry and
are directed along the rows and columns of the array.

The z axis is perpendicular to plane of the array. The
array elements are indexed by numbers (m;n). For
a right-handed coordinate system place the (1; 1) ele-
ment in the upper left hand corner of the array. The
array is divided into four clockwise arranged quadrants,
Q1; : : : ; Q4; starting with the upper lefthand quadrant.

The ground receiving antenna has spherical polar
coordinates, R; �; �. Here � and � are respectively
the polar and azimuthal angles. The elevation angle
is equal to �=2� �.

The projections of the vector ~R onto the cartesian

axes are, Tx
def
= sin � cos �; Ty

def
= sin � sin�; and Tz

def
=

cos �: The originally estimated angular coordinates of
the target, �0�0, are represented by initial cartesian
projections, Tx0; Ty0; Tz0.

The coherent signals from the m;n array elements
that are received at the ground station are of the form,

s(m;n) /
1

R
ejkRejkd(c(m)Tx+c(n)Ty): (1)

The wave-number k
def
= 2�=�; d's is the array ele-

ment spacing; and c(m) = m � (N + 1)=2; for m =
1; 2; : : :; N;

Let fSQi
g represent the sum of all the individual

coherent transmitted elemental signals in each of the
quadrants that are steered to the initial estimate of
the receiver orientation. The sum and delta beams in
the Tripulse/monopulse methods are de�ned by

S� = SQ1
+ SQ2

+ SQ3
+ SQ4

;

S�x = SQ1
� SQ2

� SQ3
+ SQ4

; (2)

S�y = SQ1
+ SQ2

� SQ3
� SQ4

:

De�ning X
def
= kd(Tx � Tx0), and Y

def
= kd(Ty � Ty0),

the analytical expressions for these signals are:

S� = K
sin(XN=2)

sin(X=2)

sin(Y N=2)

sin(Y=2)
;

S�x
= j2K

sin2(XN=4)

sin(X=2)

sin(Y N=2)

sin(Y=2)
; (3)

S�y = j2K
sin(XN=2)

sin(X=2)

sin2(Y N=4)

sin(Y=2)
:



The notation has been simpli�ed by grouping the con-
stants multiplying all the signals into a single generic
complex coe�cient K. From these results we see that
the sum and delta signals di�er in phase by �=2. The
imaginary parts of the ratio of the delta to the sum
beams are usually referred to as the Monopulse ratios,

Rx
def
= =m

"
S�x
S�

#
= 2

sin2(XN=4)

sin(XN=2)
; (4)

Ry
def
= =m

"
S�y
S�

#
= 2

sin2(Y N=4)

sin(Y N=2)
:

The process that is used to estimate the orientation
errors is as follows:

1. Measure the ratios, R̂x; R̂y.

2. With the measured values of R̂x; R̂y solve the

transcendental equations Eqs. (4) for X̂N=4; Ŷ N=4
for the errors,

�̂x
def
= T̂x � Tx0; �̂y

def
= T̂y � Ty0;

The estimated angles can be computed using,

�̂ = sin�1
q
T̂ 2
x + T̂ 2

y ; �̂ = tan�1

 
T̂y

T̂x

!
:

The sum beam maximum coincides will the ini-
tial orientation estimate of the ground station receiver.
The initial estimates of the ground station's orienta-
tion angles can be obtained using conventional attitude
measurement systems [2]. The Tripulse algorithm �nds
the position of the sum beam maximum relative to the
true orientation of the ground station receiver. This is
signi�cant as it is well known from spectral estimation
theory that the maximum likelihood estimate (MLE)
for a single complex sinusoid in complex Gaussian white
noise corresponds to the maximum of the periodogram
[3]. It is also well know that 1-D direction of arrival
estimation (DOA) for point sources in the far �eld of a
line phased array is completely equivalent to temporal
spectral estimation. The form of the periodogram for
temporal spectral estimation and the power spectrum
for the sum beam of a linear array are identical. Ac-
cordingly, the maximum of sum beam power spectrum
for a uniform linear array will correspond to the MLE
for the DOA estimate of a single point source .

From an obvious extension of this discussion to 2-D
systems, it is evident that the Tripulse methods gener-
ate the MLE for the ground station spatial frequencies.

III. TRIPULSE SYSTEM

1. The Tripulse system must transmit three di�erent
time multiplexed coherent pulses corresponding to the

sum and two delta beams. For each pulse the satellite
borne transmitting antenna is electronically steered to
the initial orientation angle estimate of the ground sta-
tion. The initial orientation angle estimates are ob-
tained either using separate Earth-Moon-Sun sensors,
or the estimates from a previous Tripulse estimation
sequence.

2. The receiving antenna (either a phased array or a
dish) is steered to maximize the received signals.

3. Coherent detection of the Tripulse signals are per-
formed at the receiver with one or more reference sig-
nals that are phased-locked to the input Tripulse tone
at the transmitter. The coherent detection system ar-
chitecture must be speci�cally designed to compensate
for Doppler phase shifts due to satellite motion and in-
dependent phase noise e�ects due to non-synchronized
clocks on the satellite and the ground receiving station.

IV. TRIPULSE PERFORMANCE ANALYSIS

4.1 Statistical noise analysis

The estimates of the orientation errors, �̂x; �̂y, are
obtained by solving the transcendental equations gen-
erated by the functional form of the �=� ratios given
by Eq. (4). For small errors in the initial orientation es-
timates, these functions can be approximated by their
leading order expansion terms,

Rx
�= XN=4; Ry

�= Y N=4: (5)

For a typical Ku band system, N2 = 256; d = 3�. The
initial Earth-Moon-Sun attitude estimates Tx�T0x and
Ty � Ty0 are � 0:1�=180. The higher order terms in
the expansions illustrated in Eq. (5) are only � 2% of
the �rst order linear terms. Using the linear term, we
calculate the statistics of the projection errors in terms
of the corresponding noise statistics of the �x=� ratios,

Ef�xg �=
4

kdN
E
n
Rx

o
;

varf�xg �=
� 4

kdN

�2
varfRxg: (6)

The demodulated signals have been low-passed �l-
tered and have a base-band bandwidthW . The signals
are subsequently sampled at the frequency W = 1=T;
where T is the sampling period. In the moderate SNR
regime the statistics the noise can be approximated by
the statistics of complex AWGN with a power spectral
density, N0 [4], The variance of the noise samples has
an implicit bandwidth dependence, �2 � N0W . The
expansion of the variance in a power series of the ratio
of the sampled noise variance to the square magnitude
of the sum signals gives,

var
�
R̂x

�
=
�
1+jS�x=S�j

2
� �2

2jS�j2
+O

�
�4

jS�j4

�
: (7)



For practicable systems, jS�j
2 >> �2; and jS�x=S�j

2 <<
1; therefore

varf�xg �=
� �

�dx

�2 2

N6

N0W

jKj2
: (8)

Here jKj2=(N0W ) is the link budget value of the SNR
at the receiver of the signal transmitted from a single

element of the phased array. There is no array gain
factor in this single element SNR.

The Tripulse system operates near broadside corre-
sponding to small polar angles. As var(�x) = var(�y),
the polar azimuthal angles are related by,

var(�) � 2var(�x); var(�) �=
var(�x)

sin2 �
: (9)
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Figure 1: Tripulse robustness to noise

In Fig. 1. we show the Monte-Carlo simulation re-
sults for the standard deviation of the polar angle esti-
mates for di�erent single element SNR levels as a func-
tion of the number of elements in the phased array. The
initial angular estimate was taken at a �xed error of 0:1
degrees. The simulation results are in accord with the
theoretical results of Eq. (8,9).

4.2 Tripulse measurement time estimates

The required measurement times for large order ar-
rays can be very short because measurement SNR's
are enhanced signi�cantly by the large antenna gain
in the sum beam. From Eq. (8), with Tint � 1=W;
the integration time necessary to satisfy a speci�cation
�spec � std(�x) � std(�y) on the orientation-projection

error as a function of the single element link budget
value, jKj2=N0, is

Tint �
1

�2spec

2

N6

�
�

�dx

�2
N0

jKj2
: (10)

For a Ku band GEO satellite, assume: a single element
downlink budget value, jKj2=N0 � 37dBHz; a square
array with N2 = 256; d = 3�; and an orientation-
projection speci�cation �spec = 3:7�10�5, correspond-
ing to a 3 sigma (estimate within 3 standard deviations
of correct value) angular speci�cation of :01 degrees.
Substituting these values into Eq. (10), we calculate a
required measurement time of � 160�sec.

In some cases the interference spectral density will
be dominated by intermods rather than receiver noise.
The intermodulation spectrum can also be modeled as
being uniform (white) over the receiver bandwidth. For
these cases the analysis proceeds the same as above,
where the noise spectral density N0 is replaced by the
e�ective intermodulation spectral density, I0. Here
again, 37 dBHz is a representative number for the down-
link budget, and the required integration time will still
be � 160�sec.

4.3 Sensitivity to quantization errors

Figure 2. illustrates the sensitivity of the Tripulse
estimate to random phase quantization errors in the
beamformer phase states. Simulations were performed
using phase errors that were uniformly distributed over
a width equal to the quantization level associated with
the highest bit state. For example, a �ve bit quan-
tizer will have a uniformly distributed phase error of
�1=2(2�=25). As we see, nominal Tripulse 3 sigma ori-
entation error speci�cations of � 0:01 deg : are met for
array orders exceeding � 320 elements for a �ve bit
quantizer.

4.4 Sensitivity to faulty elements

We now estimate the e�ects of element failure on
the accuracy of the orientation estimation. For a given
percentage of \dead" elements, we performed a Tripulse
orientation estimate for each random arrangement of
the dead elements throughout the array. The estima-
tion error statistics are based upon 20K trials (random
arrangements) for each indicated number of failed el-
ements. The results illustrated in Fig. 3 indicate that
in the absence of receiver noise that 3 sigma speci�ca-
tions of � 0:01 deg : can be maintained for up to � 15%
element failures. Satellites will be designed so that less
than 10% of the elements will have failed by the end of
the life cycle.
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Figure 2: Tripulse robustness to phase quantization
errors
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Figure 3: Tripulse robustness to failed elements

V. ATTITUDE ESTIMATION

The goal of three-axis attitude estimation is to �nd
the physical rotation the array coordinate system has
undergone relative to some �xed reference coordinate
system, assuming that the position of the array is known.
The direction to a remote receiver in the reference co-
ordinate system is known a priori. The Tripulse tech-
nique measures the direction to a remote receiver rel-
ative to the array coordinate system. The attitude is
determined by �nding the transformation that registers
these direction vectors.

In order to solve for the attitude of the phased ar-
ray, direction measurements to at least two remote re-
ceivers are necessary, and more can be used to increase
accuracy and robustness.

Let l = 1; : : : ; L index the remote receivers. The di-
rection to remote receiver l is represented by the unit
vector t0l in the reference coordinate system and by tl =
(Tl;x, Tl;y , Tl;z) in the array coordinate system. The
Tripulse procedure estimates Tl;x and Tl;y and we cal-

culate Tl;z =
q
1� T 2

l;x � T 2
l;y . The direction vectors

are related by the rotation matrix R,

tl = R t0l: (11)

Using this relation and the least-squares procedure of
[5], Tripulse measurements are used to solve for the
unknown attitude of the array.
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