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ABSTRACT
The method for reconstruction and restoration of super
resolution images from low resolution sequences presented
here is an extension of Irani and Peleg's algorithm (“Improving
Resolution by Image Registration”, CVGIP: Graphical Models
and Image Processing, Vol. 53, No. 3, pp. 231-239, 1991). The
input is a set of low resolution images that have been
registered  to a pixel translation accuracy. A high resolution
image is initialized and iteratively improved by back-projecting
the errors between the low resolution images and the
respective images obtained by simulating the imaging system.
The sub-pixel translations between the low resolution images
are quantized. The imaging system's PSF and back projection
function are estimated with a resolution higher than that of the
super resolution image and decimated so that two banks of
polyphase filters are obtained. The use of the polyphase filters
allows exploitation of all the input images without any
smoothing or interpolation operations.

1. INTRODUCTION

The issue of a super resolution image reconstruction from a
sequence of low resolution images was first introduced by Tsai
and Huang [16] in 1984. Assuming that the high resolution
image is band limited, and the low resolution images do not
have any noise or degradation, they addressed the interpolation
issue by a frequency domain observation model, considering
globally shifted versions of the same scene. The algorithms
presented by Tom and Katsaggelos [14,15] have also been
implemented in the frequency domain, using a ML approach
with the EM method.
Ur and Gross [17] improved resolution by overcoming
under-sampling with a merging process, based on the
framework of the Papoulis-Brown multi-channel sampling
theorem. Using controlled sub-pixel displacements, Jacquemod
et al. [8] created an over-sampled image and deconvolved it.
Irani and Peleg [6] proposed an iterative approach similar to
back-projection used in tomography, by assuming that every
low resolution pixel is a “projection” of a region in the high
resolution image. Later, they extended their method to improve
the resolution of differently moving objects [7]. Irani and
Peleg’s later work was extended by Bascle et al. [3], who have
also considered motion blur.
Stark and Oskoui [11] computed a high resolution image using
projections into convex sets (POCS), taking into account blur
caused by sensor geometry. Tekalp et al. [13] extended the

POCS method by incorporating the observation noise into the
problem formulation.
Using a Bayesian method for high resolution image
reconstruction, Cheesman et al. [4] formed a likelihood
function, defined as the probability of the observed data given
a model of how the data was generated. Schultz and Stevenson
[10] have placed the multi-frame interpolation problem into a
Bayesian framework, regulating the ill-posed interpolation
problem with MAP estimation.
Su and Kim [12] presented a generalized super-resolution
problem where the purpose is the restoration of continuos
image sequence with improved resolution. They used local
sampling lattice shift estimations and a DFT based high
resolution image reconstruction algorithm to perform the
restoration and the resolution improvement. Eldad and Feuer
[5] have shown that using constrained least squares, the
problem of restoration and improving the resolution of a
continuos image sequence can be reduced to several recursive
equations propagating in time. Addressing the same goal,
Avrin and Dinstein [2] compensated local small displacements
between consecutive frames using adaptive local filters, and
generated each super resolution frame from the previous super
resolution frame and the back projected filtered sub-sequence
of low resolution input frames.

2. RESOLUTION ENHANCEMENT USING
‘BACK-PROJECTIONS’

Our algorithm is an extension of the method by Irani and Peleg
[6,7], a method that is based on the assumption that every low
resolution pixel is a ‘projection’ of its receptive field in the
high-resolution image. Using Irani and Peleg’s notations, let f
be the original high-resolution image, let the observed
degraded image sequence be {gk} (k representing the transform
parameters),  the blurring function be h, the additive noise be
ηk, the 2-D geometric transformation (between f and gk) be Tk,
and the down-sampling  operator be σk . Using this notation,
the imaging model is represented by:

gk(m,n)=σk{ h[Tk(f(x,y))]+ηk(x,y)}     (1)

The super-resolution algorithm is iterative. It starts with an
initial guess f(0) for the high-resolution image. The imaging
process is simulated to obtain a set of low-resolution images
{ gk

(0)} . If f(0) is the exact original image and the imaging
simulation is perfect, then the simulated images {gk

(0)} should
be identical to the observed images {gk}. The initial guess is



improved by ‘back-projecting’ each pixel value in the
difference images {gk-gk

(0)}onto its receptive field in f(0). This
process is iterated to minimize a specific error function.
Denoting the blurring function PSF by hPSF, the imaging
process of gk  at the nth iteration is represented by:

gk
(n)=[Tk(f

(n))*hPSF]↓S                  (2)

where ↓S denotes a down-sampling operator by factor S, and ∗
is the convolution operator. The iterative update scheme of the
high resolution image is expressed by:

( )[ ]{ }f f
K

T g g S hn n
k k k

n BP

k

K
( ) ( ) ( )+ −

=
= + − ↑ ∗∑1 1

1

1     (3)

where K is the number of low resolution images, ↑S is an
up-sampling operator by factor S, and hBP is a ‘back-projection’
kernel. The choice of hBP influences the convergence of the
algorithm and the characteristics of the final solution. In order
to assure convergence and decrease noise amplification, Irani
and Peleg recommend using hBP=(hPSF)2.

3. POLYPHASE FILTERS
Polyphase filters are used in certain realizations of multirate
filtering operations in order to save computational efforts [9].
In the case where low pass filtering is followed by a
decimation with factor M, the operation can be performed with
less computations if the polyphase components of h[n] are used
to filter delayed and decimated versions of the discrete-time
signal. These polyphase components are defined by-

pm[i’ ]=h[i’M +m].        (4)

As one can see, the frequency response of the mth filter is a
frequency-shifted version of the baseband prototype. With the
use of these polyphase components (in reverse order),
expansion followed by filtering can also be performed with
computational savings.

4. POLYPHASE BACK-PROJECTING
SUPER RESOLUTION IMAGE

RESTORATION
The goal of the work described here is to form a restored high
resolution image from a given set of blurred low resolution
images. Each one of the blurred low-resolution images gi,j(k,l),
k,l=0,1,2,...,N-1, and i,j∈[0,Q-1] is a translated and decimated
observation of a low pass-filtered version of the original
high-resolution image f(m,n), m,n=0,1,2,...,SN-1. The integer S
is the resolution enhancement factor, e.g. the ratio between the
number of rows (columns) of the image f and the number of
rows (columns) of the decimated images gi,j.
Assume that the images gi,j are registered with respect to image
g0,0 (a version of g that is decimated, but not translated) up to a
pixel accuracy, and that the sub-pixel translations between the
images, ∆Xi,j  and ∆Yi,j, are known. The translations ∆Xi,j and
∆Yi,j are uniformly quantized with a quantization step of 1/Q.
Therefore, there are only Q2 possible distinct translations.

We require that R, the ratio between Q (number of
quantization levels) and S (resolution enhancement factor) is
an integer. Without loss of generality, let gi,j be the image with
translation parameters ∆Xi,j=i/Q and ∆Yi,j=j/Q.
Let hPSF(p,q) be the known real symmetric FIR point spread
function of the blurring low-pass filter. Assume that hPSF(p,q)
is known at a resolution level higher by a factor Q than the
resolution of gi,j. If hPSF(p,q) is unknown, it can be estimated
from the degraded images using conventional well known
techniques [1].
The value of Maski,j is defined to be 1 if an image with
translation parameters ∆Xi,j=i/Q and ∆Yi,j=j/Q belongs to the
given set of images, and 0 if not. The algorithm presented here
initializes an estimate of the original image f, and improves it
in an iterative way.

The proposed algorithm:
The idea behind our algorithm is the follows: we implement
any 2-D geometric translation used during the imaging system
simulation and the 'back-projection' operation by polyphase
filtering, without the need to perform smoothing interpolation
operations. Since, in general, the number of quantization levels
(Q) is larger than the resolution enhancement factor (S),  the
value of the 2-D geometric transform (performed at the
high-resolution level) contains an integer part and a fraction
part. The integer part of the transform is applied by adjusting
the indexes of the receptive field, and the fraction part of the
translation parameters is compensated by the use of the
polyphase filters. Since the number of quantization levels, Q,
can be as large as needed, using our algorithm one can use all
of the observed low-resolution images at hand, without any
restrictions regarding the translation parameters. At the
present, we assume that the geometric transform contains
translation only. In the case that the geometric transform is
more complex, registration should be performed in order to
compensate for all the distortions except for pure translations.
The first step is to initialize the super-resolution image f(0)(x,y).
The estimation of f(0) is done as follows:

Initial estimation of the restored image:
For i,j=0,R,...,S-R
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Note that if for a specific translation (i,j) a degraded image
does not exist (Maski,j=0), gi,j should be estimated by
averaging its closest present images.
The initial values of the pixels of f(0) are the respective pixels
of the lower resolution images gi,j. Now, let hPSF(p,q) mark the
FIR point spread function (at a resolution higher than gi,j by a
factor of Q), and hBP(p,q) mark the ‘back-projection’ kernel (at
the same resolution as hPSF(p,q)). The polyphase
decomposition's of hPSF and hBP are marked by {hi,j

PP-PSF} and
{ hi,j

PP-BP}, respectively. Allowing I to be the iteration index,
marking the modulus operator of a by  b as ((a))b and the
integer part of a real number by •, the proposed
super-resolution image restoration algorithm is as follows:



Initializing:
I=1, C= a convergence constant factor.

h x y h xR i yR ji j
PP PSF PSF
, ( , ) ( , )− = + +  i,j=0,1,...,R-1.            (6)

h x y h xR i yR ji j
PP BP BP
, ( , ) ( , )− = + +  i,j=0,1,...,R-1.            (7)

Iterative process:
For i,j=0,1,...,Q-1

If Maski,j=1
    Simulate the imaging process (as shown in Figure 1):
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    Calculate the difference between the simulated and
          given data:

    Dg k l g k l g k li j
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    Update the restored image (as shown in Figure 2):
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            Increase I and repeat iterating until minimizing-
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Figure 1. Simulation of the imaging process.

The efficient implementation of the filtering followed by
decimation in eq. 8 and the interpolation followed by filtering
in eq. 10 is done by polyphase decomposition [9].

5. EXPERIMENTAL RESULTS
The experimental result presented in Figure 3 was obtained
using synthetically filtered, translated and decimated images
using an averaging hPSF blurring function and generating one
degraded image for each one of the quantized translation
parameters. The back-projection kernel used here was
hBP=(hPSF)2.  
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Figure 2. Improvement of the initial guess by
polyphase ‘back-projecting’.

(a) (b)

(c) (d)

Figure 3. 'Cameraman' image result (S=4, Q=8):
(a) low-resolution image (zoomed); (b) initial estimation;

(c) interpolation result; (d) super-resolution result.

The experimental data used to generate the result presented in
Figure 4 was digitized by low-resolution scanning of an image
translated by hand. The translation parameters were estimated
using the sub-pixel registration scheme described in [6]. The
imaging system’s PSF was estimated with a derivative of an
edge response. Here we have also used hBP=(hPSF)2.

6. SUMMARY AND CONCLUSIONS
An extension of the super resolution image restoration
algorithm proposed by Irani and Peleg [6,7] has been
presented. In the proposed algorithm, the translation
parameters between the low resolution images are quantized,
and the images with the various translation quantization levels
are 'back projected' and simulated using polyphase filters.



Using the phase shifts of the polyphase filters, we can use
every low resolution image available in order to restore the
super resolution image, without the need of any smoothing.
We have shown results obtained by applying our algorithm to
low resolution images that are synthetically degraded versions
of a known image, and low resolution images that are low
resolution scanned versions of a translated image.

(a) (b)

(c) (d)

Figure 4. 'Ehud' image result (S=4, Q=16):
(a) low-resolution image (zoomed); (b) initial estimation;

(c) interpolation result; (d) super-resolution result.
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