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ABSTRACT
This paper presents the study results of non-linear channel
equalisation problems in data communications using a recently
developed minimal radial basis function neural network
structure, referred to as MRAN(Minimal Resource Allocation
Network).  MRAN algorithm uses on-line learning and has the
capability to grow and prune the RBF network’s hidden neurons
ensuring a parsimonious network structure.  Compared to earlier
methods, the proposed scheme does not have to estimate the
channel order first, and fix the model parameters.  Results
showing the superior performance of the MRAN algorithm for
two different non-linear channel equalisation problems, along
with a linear non-minimum phase problem, are presented.

1. INTRODUCTION

In high speed data communication, channel equalisation plays a
major role in extracting true data from the noisy transmitted data
corrupted with intersymbol interference (ISI) and other channel
distortions. Conventional methods[5] use linear channel
equalisation schemes which employ a linear filter with a finite
impulse response(FIR) or lattice structure, and non-linear
methods like Decision Feedback Equalisation (DFE), and
Maximum Likelihood (ML) sequence detection schemes.

Previous studies had shown that non-linear equalisation methods
perform better than linear methods[5], as they exploit some non-
linearity in the equalisation process.  Multi-layer feed-forward
neural networks and Radial Basis Function (RBF) networks have
been proposed recently to exploit the non-linearity in channel
equalisation[6][7].  This is because Artificial Neural Networks
(ANN) can easily perform non-linear classifications and function
associations.  Recently, a new minimal RBF neural network
called MRAN (Minimal Resource Allocation Network) was
developed by Yingwei et al [2], which uses a scheme for adding
and pruning RBF centres, so as to achieve a minimal network.
This paper presents the use of MRAN for non-linear channel
equalisation problems, as well as a linear non-minimum phase
channel equalisation problem.  The superiority of this method
over existing methods is that, a separate channel order estimation
is not necessary.  The algorithm uses an Extended Kalman
Filter(EKF) to determine the weight and width of each of the
nodes.  This is different from previous studies, where the width
values have to be set to an estimate of the noise variance of the
received data.  The weights are also not fixed as 1 or -1, as
suggested by Chen[7].  This means that the binary nature of the
data is not exploited.  However, the advantage in MRAN is that

the RBF nodes could adjust their weight and width values, so as
to accommodate more data around their location.  This would
mean than the resultant network may have even fewer nodes than
that required, if a node is to be placed in each of the desired
channel states.

2. EQUALISATION PROBLEM

Fig 1 Discrete time model of data transmission system

A discrete time model of a digital communication system is
shown in figure 1, where the input digital sequence s(t) is
transmitted through a dispersive channel.  Often, this is a non-
linear channel, like the one shown by equation (1)

y(t) = x(t) + k1x
2(t) +e(t)

H(z) = X(z)/S(z)=k2 + k3z
-1 + k4z

-2           (1)

where k1,k2,k3 and k4 are constants.  This ‘channel’ includes the
effects of the transmitter filter, the transmission medium, the
receiver matched filter, and other components. The transmitted
symbol s(t) is assumed to be an equiprobable and independent
binary sequence taking values of either +1 or -1.  The noise-free
output of the channel,�y(t) is added with a zero mean Gaussian
white noise, e(t), to obtain a noisy channel output, y(t).  The
equaliser performs the task of recovering an estimate �s(t) of  the
transmitted symbols, s(t), based on the noisy channel observation
y(t).

Using estimation theory [5], it is known that the Maximum
Likelihood Sequence Estimator (MLSE) for the entire
transmitted sequence would yield the best performance for
symbol detection. This method however, is highly complex with
high computational requirements, and the delay in decision
output is often unacceptable in many practical communication
systems. Thus, most practical equalisation systems employ some
form of symbol-by-symbol, decision making architecture.

In such architecture, the past m channel observations are used to
make an estimate, �s(t )− τ  of the input symbol, s(t), with a delay



τ.  For the channel given in (1), there will be ns combinations of
the input sequence where ns=2n

h
+m, and nh is the order of the

linear component of the channel.  The ns input sequence

s(t) = − + −[ ( ) ( )]s t s t m nh
T

� 1 (2)

would result in ns points of noise free channel output vector

� [ �( ) �y(t )]y(t) = − +y t m
T

� 1  (3)

These  output vectors are also referred to as desired channel
states, and are partitioned into different classes, Y+

m,τ & Y -
m,τ , for

s(t-τ)  = 1 & s(t-τ)  = -1 respectively.  Due to the additive white
gaussian noise (AWGN), the channel outputs will form clusters
around each of these desired channel states.  The noisy
observation vector

y(t) = − +[ ( ) (t )]y t y m
T

� 1  (4)

is used to determine the transmitted symbol s(t-τ), according to
the Bayes decision theory[5][7]. For equiprobable symbols, the
Bayesian decision function is defined by
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where ns
+ and ns

- are the number of y+
 and y- states in Y+m,τ  and

Y-
m,τ  respectively, and σe

2 is the noise variance.  As
 s(t - ) = 1� τ , when  fB(y)≥0, and  s(t - ) = -1� τ  otherwise, the
optimal decision boundary is defined by

  {   |  ( ) = 0}y yf
B

(6)

which is a hypersurface in the observation space.  As RBF
networks are well suited for realizing this Bayesian function[7]
as well as performing such non-linear mapping we investigate an
algorithm that could build such a equaliser network.

3. MINIMAL RESOURCE ALLOCATION
NETWORK (MRAN)

The MRAN is a sequential learning algorithm for minimum RBF
neural network, recently developed by Yingwei et al[2],[3].
Only a brief description of the algorithm is given here.  For
details please refer to [2],[3].

The output of the network used by this algorithm has the
following form :

f(x) = α0  +
k

K

=
∑

1

αk φk(x) (7)

where φk(x) is the response of the kth hidden neuron to the input
x, and αk is the weight connecting the kth hidden unit to the
output unit.   α0  is the bias term.  Here, K represents the number
of hidden neurons in the network. φk(x) is a Gaussian function
given by,

φk(b)=exp(-|| b-µk ||
2/σk

2) (8)

where µk is the centre and σk is the width of the Gaussian
function.  || || denotes the Euclidean norm.

In the algorithm, the network begins with no hidden units.  As
each input-output training data is received, and processed, the
network is built up based on certain growth criteria.  The
algorithm adds hidden units, as well as adjusts the existing
network, according to the data received.  The criteria that must be
met before a new hidden unit is added are :

||xn -µnr || > ∈n (9)

en=yn - f(xn) > emin (10)
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where µnr is the centre (of the hidden unit) which is closest to xn.
∈n , emin and emin1  are thresholds to be selected appropriately.
Equation (9) ensures that the new node to be added is sufficiently
far from all the existing nodes.  Equation (10) decides if the
existing nodes are insufficient to obtain a network output that
meets the error specification.  Equation (11) checks that the
network has not met the required sum squared error specification
for the past M outputs of the network.  Only when all these
criteria are met, is a new node added to the network.

When an input to the network does not meet the criteria for a
new hidden unit to be added, the network parameters are adapted
using the EKF. The algorithm also incorporates a pruning
strategy, which is used to prune hidden nodes that do not
contribute significantly to the outcome of the network, or are too
close to each other.  The former is done by observing the output
of each of the hidden nodes for a period of time, and then
removing the node that has not been contributing a significant
output for that period.  Also, if two hidden units are found to be
closer than a threshold value, and the values of the parameters
(α,σ) associated with the nodes are close, the two nodes are
combined to form a single node, and the dimensions of the EKF
are reduced.

A number of successful applications of MRAN in different areas
such as function approximation, time series prediction, time-
varying non-linear system identification have been reported in
[2],[3] and [4].  This is the first time MRAN is being applied to
equalisation problems.

4. MRAN FOR NON-LINEAR CHANNEL
EQUALISATION

The performance of MRAN for equalisation is shown here on the
following examples.



Example 1 (Non-Linear Channel 1)

To test the algorithm for non-linear channels, the following non-
linear channel [1]  was chosen :

y(t) = x(t) + 0.2x2(t) +e(t)

H(z) = X(z)/S(z)=0.3482 + 0.8704z-1 + 0.3482z-2           (12)

In their paper, Kechriotis et al [1] had used a recurrent neural
network with multiple iterations to realise an equaliser network.
For the purpose of graphical display, the equalizer order is
chosen as m=2.  Thus, a two dimensional plot can be made, to
show the two most recent inputs to the equaliser for each input
data passed through the channel.  In the example, nh=2.  Thus,
there will be 16 desired states for the channel output,

( 2
n mh +

=16).  The decision delay was set to one (τ=1). By using
the MRAN algorithm with 1000  data samples at 25dB snr, we
were able to obtain the classification boundary shown in figure 2.

Fig 2 Bayesian and MRAN boundary and location of
RBF centres for non-linear channel

Fig 3  Number of centres obtained as training progresses

The value of the thresholds emin and emin1 were both set to 0.1.
The other parameters were set as ∈=0.5, and M=10.  The
Bayesian boundary is shown by the dotted line, while the

boundary obtained by the algorithm is shown by the continuous
line.  The RBF centres created by the algorithm are indicated by
a ‘o’, while the actual desired states are indicated by the ‘x’.

The network has built up 12 hidden nodes.  Figure 3 shows the
growth of the RBF network, as training progresses. This is much
less than the 16 desired channel states.  However, it can be seen
that the Bayesian boundary is still well approximated, at the
critical region, which is at the centre of the figure.  The network
boundary deviates from the Bayesian boundary, at the bottom
region in the figure, but this can be seen to be less critical in the
equalisation task, from the BER curves shown in figure 4. The
Bit-Error Rate (BER) is one method of testing to see if an
equaliser is performing as required.  The network was tested with
a million test data of various SNR to obtain the BER curves.  As
it can be seen, the performance of the network is comparable to
that of the ideal case.

Example 2  (Non-Linear Channel  2)

A second non-linear channel with the following model [1] was
used :

y(t) = x(t) + x2(t) + 0.7x3(t) + 0.5x4(t)  + e(t)

H(z) = X(z)/S(z)= 1 + 0.7z-1 (13)

Such channel models are frequently encountered in data
transmission over digital satellite links, especially when the
signal amplifiers operate in their high-gain limits.  The equaliser
order  and delay were chosen to be m=2 and τ=1 respectively.
1000 training data bits were used.  They were mixed with low
noise to get 30dB SNR.  The parameters emin and emin1 were both
set to 0.9. The other parameter values were, ∈=0.5, and M=10.
The resulting network had 6 units, as compared with the 8
desired channel states.  A comparison of their BER in figure 4,
shows that the network performs only slightly poorer than the
Bayesian equaliser.

Fig 4  Error curves for ideal and RBF networks for the
non-linear channel examples



Fig 5  RBF boundary obtained for  160 samples at 15dB

Fig 6 Error curves for ideal and RBF networks

Linear non-minimum phase Channel Example

To compare the algorithm with earlier methods of RBF
equalisation, a linear non-minimum phase channel was chosen
with the following transfer function :

H(z) = 0.5 + 1.0z-1 (14)

This is the channel used by Chen et al[7]. In his paper a
clustering algorithm for 160 data samples of 10dB snr to obtain
an RBF equaliser network was used.  The method, however, had
to have knowledge of which state was being transmitted, and the
total number of states, so that the data belonging to each state
could be clustered together.  In our method, 160 samples of the
data at 15dB snr were used to build-up/train the network using
the MRAN algorithm. There was no need for estimation of the
channel order, to estimate the number of states.  Neither was
there a need to know which state the transmitted data belonged
to.

Figure 5 shows the boundary obtained after using MRAN to train
the network.  The parameter values were emin=0.1, emin1=0.3,
∈n=0.5, M=10.   The desired states are shown by a ‘*’ while the
RBF centres are shown by a ‘o’.  Though the number of RBF
centres is 9, as compared with the ideal case of 8, the boundary
obtained is indeed comparable with that of the actual Bayesian
boundary.  This shows that the MRAN algorithm is able to build

up a network that can perform equalisation comparable to that of
a Bayesian equaliser, without having a need to estimate the
channel order.

A plot of the probability of error for the RBF network and the
Bayesian equaliser is shown in Figure 6, for  test data of varying
SNR.  One  million data bits were used to test the MRAN
network, and the ideal Bayesian equaliser, for each SNR.  From
the probability of error curves, it can be seen that the network’s
performance is indeed comparable to that of the ideal equaliser.

6. CONCLUSION

The MRAN algorithm using Radial Basis Function Neural
Networks was seen to be well suited for non-linear channel
equalisation problems.   Its ability to build up a network, based
on certain parameters was seen to have an advantage over other
methods, as it could be used for on-line training of the data for
equalisation. The algorithm’s performance was evaluated by
using it to build up an equalisation network for two non-linear
channels, along with one non-minimum phase channel.  The
resulting networks were then tested by comparing their bit error
rate (BER) performance to that of the ideal Bayesian equaliser.
The results show that the networks obtained, are comparable in
performance to ideal equalisers when suitable training parameters
are selected.

7. REFERENCES
[1] G.Kechriotis, E.Zervas, and E.S.Manolakos, “Using

Recurrent Neural Networks for Adaptive Communication
Channel Equalization”, IEEE Transactions on Neural
Networks, Vol 5,No.2, March 1994.

[2] Lu Yingwei, N Sundararajan, P Saratchandran, “Adaptive
nonlinear system identification using minimal radial basis
function neural networks”, IEEE ICASSP, Vol 6, pp 3521-
3524, 1996.

[3] Lu Yingwei, N Sundararajan, P Saratchandran, “A
sequential learning scheme for function approximation
using minimal radial basis function neural networks”,
Neural Computation, Vol 9, No. 2, pp 461-478, Feb 1997.

[4] Lu Yingwei, N Sundararajan, P Saratchandran,
“Identification of time-varying nonlinear systems using
minimal radial basis function neural networks”, IEE
Proceedings -Control Theory Applications, Vol 144, No. 2,
pp 202-208, March 1997.

[5] Proakis, J. G., Digital Communications. New York:
McGraw-Hill, 1983.

[6] S. Chen, G.J. Gibson, C.F.N. Cowan, and P.M. Grant,
“Adaptive equalization of finite non-linear channels using
multilayer perceptrons,” Signal Processing, Vol. 20, pp
107-119, 1990.

[7] S. Chen, Mulgrew B, Grant P M, “A Clustering Technique
for Digital Communications Channel Equalization Using
Radial Basis Function Networks”, IEEE Transactions on
Neural Networks, Vol 4, No 4, July 1993.


