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ABSTRACT

In this paper a new approach to temporal decomposition
(TD) of speech, called \Spectral Stability Based Event

Localizing Temporal Decomposition", abbreviated S2BEL-
TD, is presented. The original method of TD proposed
by Atal is known to have the drawbacks of high compu-
tational cost, and the instability of the number and loca-
tions of events [1]. In S2BEL-TD, the event localization
is performed based on a maximum spectral stability crite-
rion. This overcomes the instability problem of events of
the Atal's method. Also, S2BEL-TD avoids the use of the
computationally costly singular value decomposition rou-
tine used in the Atal's method, thus resulting in a compu-
tationally simpler algorithm of TD. Simulation results show
that an average spectral distortion of about 1.5 dB can be
achieved with LSF as the spectral parameter. Also, we have
shown that the temporal pattern of the speech excitation
parameters can also be well described using the S2BEL-TD
technique.

1. INTRODUCTION

Temporal decomposition was �rst proposed as a method
for e�cient coding of LPC parameters [1]. TD involves
the decomposition of spectral parameters into a sequence
of overlapping event functions and an associated sequence
of event targets, as given in Eq. (1).

ŷ(n) =

KX
k=1

ak�k(n); 1 � n � N (1)

where, ak and �k(n) are the k
th event target, i.e. spectral

target, and the kth event function, respectively. ŷ(n) is the
approximation of y(n), the nth spectral parameter vector,
produced by the TD model. n represents the discrete time
index. Eq. (1) can be written in matrix form as;

Ŷ = A� Ŷ 2 R
P�N

;A 2 R
P�K

;� 2 R
K�N (2)

where P , N and K are the order of the spectral parame-
ters, the number of frames in the speech segment and the
number of event functions, respectively.

Although the original implementation of temporal de-
composition of speech by Atal was mathematically solid, it
is known to have the following two major drawbacks [1].

(i) The method is computationally costly, making it im-
practical. (ii) Instability of the number and locations of
the events. In other words, they are very sensitive to some
trivial changes in analysis parameters, i.e analysis window
size etc. The high computational time of the Atal's method
has been mainly attributed to the use of the computation-
ally involved singular value decomposition (SVD), and the
repeated evaluation of the event functions at small time in-
tervals before screening out the redundant event functions
using a reduction algorithm. Marcus & Lieshout investi-
gated the possible validity of TD as a method of determin-
ing phonetically plausible events in speech, but came out
with the instability problem of the original method with
respect to the number and locations of the event functions
[2]. Dijk-Kapper & Marcus improved the TD method to
make events more stable, but the computational time has
more or less remained the same because the time consum-
ing SVD was still involved [3].

We intend to overcome the drawbacks of the original
method of Atal, by implementing it in a mathematically
simpler way, i.e. by avoiding SVD, while adopting a spec-
tral stability criterion to determine the number and loca-
tions of the events, which avoids the necessity of redundant
evaluation of event functions.

2. S2BEL-TD OF SPEECH

The S2BEL-TD of Speech involves the following three com-
putational steps.

[STEP 1] Determination of the event targets.

( First approximation )

A
(0) =

�
a
(0)
k

�
1�k�K

(3)

[STEP 2] Determination of the event functions.

( First approximation )

�
(0) =

�
�k(n)

(0)
�
1�k�K; 1�n�N

(4)

[STEP 3] Iterative re�nement of event targets

& event functions.

(A(0);�(0)) ) (A(1);�(1)) ) � � � (A(S);�(S))

The superscript notation indicates the iteration step
number. The details of the Steps 1, 2, and 3 are given
in the Sections 2.1, 2.2, and 2.3, respectively.



2.1. Determination of Event Targets

The transition rate of the ith spectral parameter, yi(n), at
the time point n is calculated as the gradient of the best
�tting straight line, i.e. regression line, within the time win-
dow [n�M;n+M ], as given in Eq. (5). The squared sum
of these transition rates of individual spectral parameters,
yi(n), where 1 � i � P , is de�ned as the Spectral Feature
Transition Rate (SFTR) at the time point n, and is given
by Eq. (6).

ci(n) =

PM

m=�M
myi(n+m)PM

m=�M
m2

; 1 � i � P (5)

SFTR : s(n) =

PX
i=1

ci(n)
2
; 1 � n � N (6)

The local minima of s(n) indicate the frames with maxi-
mum local spectral stability in speech, and we take these
points as the locations of the events, and the corresponding
spectral parameter vectors as the initial approximation of
the event targets. Therefore, if the local minima of s(n) are
at n1; n2; ::; nK , where n1 < n2 < ::: < nK , the initial ap-
proximation of the event target matrix,A(0), can be formed
as;

A
(0) =

�
a1 a2 � � � aK

�
=

�
y(n1) y(n2) � � � y(nK)

�
(7)

2.2. Determination of Event Functions

Since the speech events exist only for a limited time dura-
tion in continuous speech, event functions should be time
limited. This makes it necessary to add a constraint to
this e�ect, when evaluating them. We achieve this by using
a weighting function, wk(n), corresponding to each event
function, �k(n).

Weighting function wk(n) for the kth event function,
�k(n), is de�ned as follows.

wk(n) =

(
nk�1 � n; if 1 � n < nk�1
0; if nk�1 � n � nk+1
n� nk+1; if nk+1 < n � N

wk =
�
wk(1) wk(2) � � � wk(N)

�
(8)
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Here, the intention is to allow a free evolution of an event
function in the region between adjacent event locations, and
to limit its behavior outside that region. By considering the
columns of the matrixW, diagonal matrices are formed as;

Wn = diag
�
w1(n) w2(n) � � � wK(n)

�
2 R

K�K (10)

The functional J
�
~�(n); �

�
is formulated by taking into ac-

count the sum of the squared error between the original and
the reconstructed spectral parameters, and a constraint to

limit the spreading of event functions in time, as given in
Eq. (11).

J
�
~�(n); �

�
=

PX
i=1

(yi(n)� ŷi(n))
2 + �

KX
k=1

wk(n)
2
�k(n)

2

(11)
where � is a constant weighting factor and,

~�(n) =
�
�1(n) �2(n) � � � �K(n)

�T
; 1 � n � N

yi(n) and ŷi(n) are the i
th element of the vectors y(n)

and ŷ(n), respectively.

Minimization of the functional J
�
~�(n); �

�
with respect

to ~�(n) results in the Eq. (12), using which the initial

approximation of the event function matrix, �(0), could be
formulated as given in Eq. (13).

~�(n) =
�
A
T
A+ �Wn

T
Wn

��1
A
T
yn (12)

where, 1 � n � N

�
(0) =

�
~�(1) ~�(2) � � � ~�(N)

�
(13)

2.3. Iterative Re�nement Procedure

We adopt an iterative procedure to improve the shapes of
the event functions and the TD model accuracy, and to re-
�ne the event targets. The initial event functions show
undesirable minor-lobes, i.e. negative projections, apart
from the desirable major-lobes as shown in Fig. 1. The
iterative re�nement procedure e�ectively smooth-outs the
minor-lobes while allowing the major-lobes to evolve freely.
It also improves the TD model accuracy and re�nes the
event targets. This involves the recursive performance of
the procedures described in the Sections 2.3.1 and 2.3.2.
Generally, 4 to 5 iterations are required to shape up the
event functions.
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Figure 1. Typical shape of the initial event functions

2.3.1. Re�nement of Event Functions

Recalculate the event functions using the procedure of Sec-
tion 2.2, but use an adaptive weighting function and the
quantitative balancing of the two error-terms of the func-

tional J
�
~�(n)(l); �(l)

�
, as described below.

(A(l�1)
;�

(l�1))! �
(l)
; 1 � l � S (14)



where, l and S are the iteration step number and total num-
ber of iterations, respectively.

� Adaptive Weighting function

We de�ne an adaptive weighting function as follows. It
is adoptive to the major lobe limits of the event functions.

w
(l)
k
(n) =

8<
:

l
(l�1)
k � n; if 1 � n < l

(l�1)
k

0; if l
(l�1)
k

� n � r
(l�1)
k

n� r
(l�1)
k

; if r
(l�1)
k

< n � N

(15)

Where, l
(l�1)
k

and r
(l�1)
k

are the left and right limits of

the major lobe of the event function �k(n)
(l�1). The in-

tention here is to restrict the minor-lobes while allowing
the major-lobe to evolve freely. Therefore, this gives rise
to major-lobe expansion, contraction or shift with a simul-
taneous minor-lobe reduction, when the iterations are per-
formed.

� Quantitative Balancing of the functional J
�
~�(n); �

�
Select the weighting factor �(l) at the iteration step

l so as to balance the two error terms of the functional
J
�
~�(l)(n); �(l)

�
using the results obtained at the iteration

step (l � 1), i.e. �(l�1) and A(l�1), as given below.

�
(l) = � �

 PN

n=1

PP

i=1

�
yi(n) � ŷi

(l�1)(n)
�2

PN

n=1

PK

k=1
w
(l)
k (n)

2
�
(l�1)
k (n)

2

!
(16)

where, ŷi
(l�1)(n) =

PK

k=1
a
(l�1)
ik

�
(l�1)
k

(n), and � is the con-
stant balancing ratio.

2.3.2. Re�nement of Event Targets

Recalculate the spectral targets by minimizing the squared
error between the original and the reconstructed spectral
parameters, with respect to the target vectors as follows.

�
(l)
! A

(l)
; 1 � l � S (17)

Ei =

NX
n=1

 
yi(n)�

KX
k=1

a
(l)
ik
�
(l)
k
(n)

!2

; 1 � i � P (18)

By setting the partial derivative of Ei with respect to
air, to zero we obtain;

KX
k=1

a
(l)
ik

NX
n=1

�
(l)
k
(n)�(l)r (n) =

NX
n=1

yi(n)�
(l)
r (n); 1 � r � K

(19)
This gives P sets of K variable simultaneous equations,

using which a
(l)
ik
, where 1 � k � K and 1 � i � P , could be

evaluated.

3. SIMULATION RESULTS

The Female/Japanese utterance \shimekiri ha geNshu desu
ka" of the ATR Japanese Speech Database, resampled at 8
kHz, was used as the speech data. 10th order LSF parame-
ters were calculated using a LPC analysis window of 30 ms

at 10 ms frame intervals. The plot of SFTR and the �nal
event functions for the above data is shown in Fig. 2. The
window size for the SFTR calculation is 2M = 40 ms. The
event rate is about 20 events/sec. �(0)=0.005 and �=1 were
selected as appropriate values for the weighting factor and
balancing ratio, respectively, based on simulation results.
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Figure 2. Plot of SFTR and the �nal event functions for
the utterance \shimekiri ha geNshu desu ka". S2BEL-TD
analysis has been performed on the utterance on a segmen-
tal basis. The speech waveform is also shown together with
the phonetic transcription for reference. Broken lines in the
speech plot show the phoneme boundaries, while the solid
lines in the SFTR plot show the spectrally stable frame
locations, i.e. local minima of SFTR.



4. PERFORMANCE EVALUATION

An objective evaluation was performed based on the spec-
tral distortion (SD) between the original spectral parame-
ters, y(n), and the spectral parameters reconstructed from
the TD model, ŷ(n). SD evaluation was performed on a set
of �ve utterances in the ATR Japanese Speech Database.
The average spectral distortion, and the percentage number
of frames lying in the error bands of SD < 2 dB, 2 dB �

SD < 4 dB and SD � 4 dB, were found to be 1.5 dB, 78%,
20% and 2%, respectively. The results signify a good ap-
proximation of the spectral parameters by the S2BEL-TD
model.

5. S2BEL-TD OF SPEECH EXCITATION

We employ the S2BEL-TD technique to describe the tem-
poral characteristics of the speech excitation parameters,
i.e gain, pitch and voicing. Here, the same event functions
evaluated for the spectral parameters are used to describe
the temporal evolution of the gain, pitch and voicing pa-
rameters also. We believe that the speech production is a
synchronously controlled process with respect to the move-
ment of di�erent articulators, i.e. jaws, tongue, larynx,
glottis etc., and therefore the temporal evolutionary pat-
terns of di�erent properties of speech, i.e. spectrum, pitch,
gain and voicing, can be described by a common set of event
functions.

Let b(n) be a excitation parameter, i.e. gain, pitch or

voicing. Then we approximate b(n) by b̂(n), the recon-
structed excitation parameter for the nth frame, as follows
in terms of excitation targets, bk's, and the event functions,
�k(n)'s.

b̂(n) =

KX
k=1

bk�k(n); 1 � n � N (20)

In Eq. (20), the event functions, �k(n)'s, are known and
therefore we determine the excitation targets, bk's, by min-
imizing the squared error between the original excitation
parameters and the reconstructed excitation parameters as
follows.

Eb =

NX
n=1

 
b(n)�

KX
k=1

bk�k(n)

!2

(21)

KX
k=1

bk

NX
n=1

�k(n)�r(n) =

NX
n=1

b(n)�r(n); 1 � r � K

(22)
Eq. (22) gives a set of K variable simultaneous equations,
using which bk, where 1 � k � K, could be evaluated.
In the case of pitch parameters, linear interpolation was
used within the unvoiced segments to form a continuous
pitch contour. In the case of voicing parameters, a hard
limiter with a threshold value of 0.5 was used determine the
reconstructed binary voicing parameters and binary voicing
targets, from the non-binary results of Eq. (20) and Eq.
(22), respectively. Fig. 3 shows an illustration of the gain
contour approximation. Simulation results show that RMS
gain-error, RMS pitch-error and percentage voicing error
to be about 2.5 dB, 2.5 Hz and 4%, respectively. The low

reconstruction error justi�es a good approximation of the
excitation parameters, by the S2BEL-TD model.
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Figure 3. Original and reconstructed gain contours, and the
gain-error for the same utterance as in Fig. 2. The RMS
gain-error is 2.5 dB.

6. CONCLUSION

In this paper we have presented a new approach to tempo-
ral decomposition of speech. The spectral stability criterion
used in event localizing, and the use of adaptive weight-
ing functions in determining the event functions, can be
highlighted as the main features of the proposed S2BEL al-
gorithm for TD. The former makes the event localization
robust eventually overcoming the instability problem of the
Atal's method. The latter gives a greater degree of freedom
to the event functions to evolve through iterations, com-
pared to the more constrained quadratic weighting func-
tion of the Atal's method. Also, we believe that the S2BEL
algorithm which makes no use of SVD algorithm and the
redundant calculation of event functions, is a signi�cant im-
provement in terms of computational time compared to the
original method by Atal. On continuous speech S2BEL-TD
can be performed on a segmental basis. The representation
of speech excitation parameters also in terms of excitation
targets and event functions makes S2BEL-TD a complete
higher-level parametric model of speech, which would be
useful in phonemic-level parametric manipulation of speech.
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