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ABSTRACT

A novel and practical approach of array calibration in underwater
high-resolution direction finding is presented to alleviate the
effect of different errors generated in underwater array
processing system in this paper. It is different from other
algorithms in that array manifold used in subspace-based
methods is obtained through automatic measurement instead of
using theoretical value. It can efficiently calibrate the errors of
gain, phase, mutual-coupling, position of sensors, and other
reasons generated by the array and sensors even they are
direction dependent. Spatial smoothing technique is employed
and so the method is effective no matter the sources are
correlated or uncorrelated. It is also proved by the experiment
that spatial smoothing is beneficial to reduce some errors. At last,
several experimental results are provided to verify the efficiency
of the new calibration method.

1. INTRODUCTION

Advanced techniques for array processing based on eigen-
decomposition of the covariance matrix of received signals have
been discussed extensively in the literature since the beginning
of this decade[1]. The popularity of these algorithms is due to
their generality--they are applicable to arrays of arbitrary but
known configuration and response. These methods are proved to
be sensitive to modeling errors and require detailed knowledge
of the array response (the array manifold)[3]. Their performances
decrease drastically with a bad knowledge on the array manifold.
However, in practice, the array response is always different from
assumed one.

The performance degradation of these algorithms due to the
errors have received some attention. In [2], J. Pierre and M.
Kaveh had constructed an ultrasonic experiment testbed and
attempted to solve this problem. In [3], A. J. Weiss and B.
Friedlander critically proved that modeling mismatch may
seriously result in the performance descent of high-resolution
DOA methods and examined the resolution threshold of the
MUSIC algorithm when the array response is perturbed from its
assumed model. Also, they pointed out that preprocessing on the
array output may alleviate the problem. In [4], N. Fistas and A.

Manikas presented a general global array calibration method.
They considered position, phase, and gain error of sensors
simultaneously. By their method, all the error parameters can be
worked out and then the array can be calibrated at last. In [5], A.
P. C. Ng provided a method considering the case when
wavelength is unknown or imprecisely known and showed that
an inherent ambiguity prevented a linear array from resolving
wavelength and DOA simultaneously. In [6], B. C. Ng proposed
a calibration method based on a maximum likelihood approach.
It can evaluate the calibration matrix consisting of the unknown
gain, phase, and mutual-coupling coefficients as well as the
positions of sensors using a set of calibration sources in known
locations.

Through Monte-Carlo simulation we find that the methods list
above all can get properly good results (assuming all the errors
are direction-independent). In order to apply the high resolution
DOA methods on practicality, we construct an underwater high
resolution array processing experimental system.

In section 2, the experimental system is described and the error
factors in each link are analyzed. In section 3, an efficient
calibration method is presented and several experimental results
are shown in section 4. Section 5 gives a concise conclusion.

2. UNDERWATER HIGH-RESOLUTION ARRAY
PROCESSING EXPERIMENTAL SYSTEM

The experimental system frame is shown in Figure 1. The entire
system consists of a 20×7×8m3 water tank, two transmitting
transducers, a linear array with 14 sensors, multi-channel filter
and amplifier, a data acquisition system, and a super signal
processing system which can give real-time estimation results.
The linear array is fixed in water tank 10 meters far from the
array.

The transmitters generate a narrowband signal. The wall of water
tank is specially processed so as to minimize the reflection.

From figure 1 we can see that the acoustic wave emitted from
transducers must pass many steps and then the DOA estimates of
sources can be got at last. It is started with the electrical-sonic
transformation, propagation in water, sonic-electrical



transformation, A/D sampling, and then the DOA estimates can
be obtained. Because the electrical equipment, physical devices,
water environment, positions and responses of array elements are
all with uncertainty, a variety of errors are embedded. We
summarize most of errors as follows:

Figure 1. Block diagram of the experimental system

(1)Original signal error: The transmitters' center frequency may
be slightly different from the designed value.

(2)The inconsistency of multi-channel in the filter and amplifier.
(3)The difference between each channel of A/D.
(4)The different response of each sensor.
(5) Position error of elements.
(6) Far field condition is unsatisfied.
(7)The mutual-coupling of each two sensors.
(8)The difference of local acoustic field of each sensor.

Because the electrical equipment used in our experiment are
advanced and accurate enough, (1) (2) (3) can be ignored.

The output of each sensor unified by the first sensor before fixed
on array (response 1) and after fixed on array (response 2) is
shown in Table 1. The divergence between them is due to several
reasons, such as reflection, mutual-coupling, error of sensors
response and some other reasons. It is hard to establish a model
to calibrate.

As for (4), there have been many papers presented on this
problem, such as [4][6], etc.. But because of complex effect of
these different errors, it is difficult to improve the performance of
high resolution algorithms by using the parameters evaluated
only based on observed data from several directions. It has been
tested that the accurate DOA estimates can only be obtained in
the directions around the position of known sources.

As for (6), we find that because of unknown phase error of
sensors, mutual-coupling and 'border effect' caused by the
pedestal of the array, only geometrical compensation is not
effective.

After the failure of attempt to calibrate the array by using the
methods presented above and in [2]-[6], we propose a new

calibration method. Considering the requirement of applications,
our algorithm is simple, efficient, adaptive to correlated and
uncorrelated sources, and operating easily.

3. CALIBRATION ALGORITHM

In order to calibrate most of the errors in our experimental
system, we propose the following algorithm. Omit the tedious
derivation, we give the clear steps of the method directly.

Step 1: Unify the output of each sensor

Based on the assumption that sensors of the array are all the
same and isotropic, the power of each channel should be
identical. From Table 1 we can find that the amplitude of each
sensor is much different from each other and even up to 1.6
times. So, before dealing with other errors, the output of each
sensor is unified at first.

Assume x ni [ ]  is the output of ith sensor at snapshot n, Pi  is

the average output power of ith channel, N is the number of used
snapshots and M is the number of sensors. We preprocess the
data by
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where ~[ ]x ni  is the unified array output of ith sensor. After this,

the power of all sensors are all the same. Most of gain error of
the sensors and inconsistency of channels are reduced.

Step 2: Spatial Smoothing

Because of the limited snapshots used in estimation, the
bandwidth of narrowband signals and other reasons, it is
inevitable that the sources are correlated between each other.
Here the forward/backward spatial smoothing method[9] is
employed to deal with the problem.

For linear array with M sensors, it can be divided into P
subarrays. Each subarray has L sensors. Then P=M-L+1.
Forward smoothing covariance matrix of kth subarray is defined
as
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transpose operator.

Forward/backward smoothing covariance matrix is given by
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Then covariance matrix �R (L×L) defined in (3) is used in high

resolution method instead of original �R (M×M ).

By using spatial smoothing technique, the correlation between
sources is resolved. Meanwhile, the effect generated by the errors
of gain, phase, position of sensors are also reduced. It was
verified in our experiments.

Step 3: Calibrate the array manifold

Through measurement we found that the directivities of sensors
are inconsistent and so the errors are seriously direction-
dependent. It is an efficient way[2] to degrade this problem by
precisely measuring the array manifold over interesting range of
directions.

Assuming the searching range is [-α,α], we fix a source under
water and its angle to the array center is β. The array can be
rotated automatically with a step of ∆, then β can change from -α
to α, that is,

β αj j= − + −( )1 ∆ È j=1,2,..., qÈ q=2α/∆

When the array is in jth position,  let x ni
j( ) [ ]  be the output of

ith sensor of snapshot n(i=1,2,...,M, n=1,2, ...,N). Then the
covariance matrix of jth position is given by
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Therefore there is a one-to-one correspondence between the

principal eigenvector 
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a(θ). We can also use spatial smoothing to reduce the dimension

of 
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 from M×1 to L×1. By automatic measuring, we can get
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(j=1,2,...,q), which are the real array

manifold.

Step 4: Estimate the DOAs

Now we represent the MUSIC method using real array manifold
as
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where m is the number of sources, 
*
ei (i=m+1,...,L) is the noise

subspace of covariance matrix�R , θ[ ]j (j=1,2,...,q) is the jth

direction.

This step accumulates all the information over the searching
range and so each point of estimation result is based on the
correspondent prior knowledge.

In order to simplify the procedure of operation, we have
designed an auto measurement and storage system. Before the
test or application, the array manifold is automatically measured
and stored in an EEPROM or disk of PC. It is very convenient to
obtain the direction vector by looking up the list. So the
computational load is not increased.

4. EXPERIMENTAL RESULTS

This section contains several experimental results. We apply the
calibration method proposed before in the experiment and
employ the MUSIC and Mini-Norm method to estimate the
DOAs of test data. The results before calibration and after
calibration is compared. Furthermore, statistical results of
separation probability of the MUSIC and Mini-Norm methods
are also list in Table 2,3.

In the first test, two uncorrelated sources are placed at 0° and -
2.4° (about 1/3 beamwidth apart). Test results are shown in
figure 2. It is very clear that before calibration, the Mini-Norm
can not get the effective estimation. The spectrum peak deviate
from true signal direction and two sources can not be recognized.
After calibration, we can see, two sharp peaks in spatial spectrum
show super performance of high-resolution ability of the Mini-
Norm. It is proved in [8] by a statistical approach that Mini-
Norm has super separation ability over the MUSIC. Here, in
Table 2, it is also verified by our test.

Table 2: Resolution probability comparison
(Two uncorrelated sources, 1/3 Beamwidth apart)

Mini-Norm MUSIC

No calibration 0% 0%

After Calibration 100% 67%

In the second test , two full coherent sources are emitted, which
are located in 0.3° and -3.7° (nearly 3/5 beamwidth apart).
Figure 3 and Table 3 show the estimated spatial spectrum and
statistical results. In this case, the method can also get high-
resolution result. But the resolution ability is less than
uncorrelated case.



Table 3:Resolution probability comparison
(Two coherent sources, 1/3 Beamwidth apart)

Mini-Norm MUSIC

No calibration 0% 0%

After calibration 81% 45%

5. CONCLUSION

In this paper an underwater high resolution array processing
system is described and an efficient array calibration method is
presented. Three features of this method are very important in
application. At first, it is very simple. It nearly does not increase
the computation load in array processing. Secondly, it can deal
with correlated sources. The third one is that it can calibrate most
types of array errors, especially the direction-dependent errors. It
is more suited for engineering application.
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Table 1: Response of each sensors

Sensor ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Response 1 1 0.93 0.94 0.88 0.93 0.92 0.95 0.85 0.90 0.92 0.85 0.91 0.91 0.87

Response 2 1 1.15 1.07 0.85 0.85 1.00 0.77 0.77 0.85 0.69 0.77 0.92 1.23 1.07
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Figure 2: DOA estimates of Mini-Norm method      Figure 3: DOA estimates of Mini-Norm method
(Two uncorrelated sources, 1/3 beamwidth apart) (Two full coherent sources, 3/5 beamwidth apart)


