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ABSTRACT
Description of signals using wavelet transforms leads to useful
time-frequency localization and possible signal compression.
Based on the Discrete Wavelet Transform (DWT) an adaptive
sampling algorithm in the discrete time domain is constructed,
by finding an univocal relation between the signal’s samples and
the non-zero transform coefficients of its DWT.  Reconstruction
is performed through repeated projections of an approximation
of the initial signal based on the arriving samples, into the
original signal’s subspace, using the  Neumann method of
inverting bounded operators. Both adaptive sampling and
reconstruction are on-line because of the finite support of  the
analyzing wavelets.

1. INTRODUCTION

Compression of discrete signals using the Fourier Transform
(FT) followed by decimation according to the so determined
spectral support is already common practice. However this
method bears the disadvantages of inexactness due to the
inherent truncation of the signal when calculating the FT. It is
also difficult to implement on-line since good results are subject
to relatively long portions of signal taken into consideration.
The good localization in frequency provided by the FT is paid
for with poor localization in time. Using other systems of
orthogonal functions providing a better compromise between
time and frequency localization, could lead to a locally adapted
decimation algorithm. The decision of whether a sample should
or should not be transmitted to make perfect reconstruction
possible, could be taken  “on the spot” using a few adjacent
values of the signal, and at the same time according to the local
frequency content, thus enabling compression by way of
adaptive sampling.

Such a system of orthogonal base functions is provided by
compactly supported wavelets, generated for example with the
two-channel iterated system in Fig.1 using FIR filters. Due to
their way of generation [1] [3] [4], the wavelets decompose the
frequency domain in constant quality-factor sub-bands. The
Fourier coefficients of the DWT performed by the analysis (left)
side of the structure in Fig.1, are an indication of the
instantaneous frequency localization of the signal. If the two
filters have impulse responses h and g, then the orthogonal base
functions analyzing the signal, for example in an N iteration
structure are (↑2 stands for scaling by 2 using interpolation) :
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Figure 1. Iterated two-channel filterbank for multi-
resolution analysis

With augmenting number of iterations, the discrete sequences in
rel. (1) approximate increasingly better their continuous domain
wavelet counterparts [1]. The filters we further use, are
generated by the parametrization in [3] of the poliphase matrix
HP , where U0 is  ½ [ 1 1; 1 -1 ], and v = [a b]T with a²+b²=1:
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We can describe the filters as:
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with matrices A (first two columns) and B (third and fourth
column) defined for calculating purposes. Let us remark that
ATA+BTB=1 and ATB=BTA=0.

2. ADAPTIVE SAMPLING
ALGORITHM

Denote the discrete signal to be adaptively sampled by x and its
image in the domain of its DWT coefficients by y and y*.  The
direct and inverse transformation can be written as:
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Fig 2 illustrates the signal  values xk  ,with k the current time
index, and the corresponding image values y and y*, where y*ij
are the coefficients corresponding to the analysis with low-pass
filter h, and yij are the coefficients corresponding to the high-
pass g filter, i referring to the level of iteration and j to time.



Figure 2. Samples of the source signal x and
corresponding DWT coefficients y and y*

The analysis can be iterated on the low-pass branch,
transforming the y*  signal to become, i.e. after 1 iteration:
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with y2*  and y2 the image of y1*.
Zero coefficients in the DWT transform point to absent
frequency components at that particular moment, due to the
time-frequency localization properties of the wavelet. Setting
y1,2k and y*1,2k  to 0 in eq. (4), and multiplying successively by
AT and BT gives:

b.x2k     - a
.x2k-1  = 0                                (7)

a.x2k-2 + b.x2k-3 = 0
This means that if the two y coefficients are zero, one can ignore
one of the samples {x2k or x2k-1} and {x2k-2 or x2k-3} in
transmission, thus obtaining a locally adapted sampling. The
remaining samples must uniquely determine the initial signal so
the equation system obtained by setting several DWT
coefficients to zero must be a determined one. With only one
level of iteration, represented by the decomposition in Fig 2,
choosing the remaining samples so as to fulfill the condition of
non-zero determinant is easy. This is not at all straightforward if
the analysis is performed with a multiple iteration structure like
in Fig1. After the DWT, the coefficients of type y* (here the
low-pass components) are known only for the last level, and
signal values xk and image values yk and y*k  depend on one
another in a way that the resulting equation system is not of
finite order, having a pseudo-diagonal  semi-infinite system
(transformation) matrix.
We obtain an univocal relation that points to a sample to be left
out of the signal x,  for every coefficient yij  in the image y that is
of zero value, without affecting the uniqueness of the x  signal.
This is achieved in a few steps:
Theorem 1.  Consider the  following sequences of real numbers
: (xn), (y2n), (y*2n), n in  Z, satisfying the  relations:

      b.x2n-1  + a.x2n      =  c.y*2n+2 + d.y2n+2      (8)
     -a.x2n+1 + b.x2n+2 = -d.y*2n+2 + c.y2n+2

where a²+b²=1, a,b !=0, c=(a+b)/sqrt(2), d=(a-b)/sqrt(2) (Obs.:
these are eq. (4) and (5) explicited after applying AT and BT to
them, with the first “1” index in y1,2n+2  left aside for simplicity).
If there are k,m in Z with k<m so that x2k-1, x2m, y2k+2,....y2m,
y*

2k+2,...y
*
2m are known, than the values x2k,x2k+1,....x2m-1 of the

signal are uniquely determined .
Corollary 1.: Consider the sequences x, y and y* from Theorem 1
satisfying conditions (8) and the numbers k,m in Z, k<m. If x2k-

1,x2m are known, and y2k+2,....y2m, y*
2k+2,...y

*
2m are all zero, then

x2k,x2k+1,....x2m-1 are uniquely determined.

This is equivalent to saying that x2k,x2k+1,....x2m-1 can be neglected
at transmission or storing, thus obtaining data compression. But
we need an algorithm to uniquely put into correspondence one
sample of the signal and one coefficient of the wavelet transform,
even when there are no compact sequences of zeros among the
coefficients. So further we have:
Theorem 2: Consider the sequences of real numbers from
Theorem 1, fulfilling condition (8), and the numbers k,m in Z,
k<m. If we know x2k-1 and two elements from each of the
following sets: {x2k, x2k+1, y2k+2, y

*
2k+2},...{x 2m-2, x2m-1, y2m, y*

2m},
and x2m, then the elements x2k,x2k+1,....x2m-1 are uniquely
determined.
Proofs of the theorems are presented in [5]
As a consequence, following sampling procedure can be adopted:
Corollary 2: Under the conditions of Theorem 1, for k<m,  and
knowing the samples x2k-1 and  x2m, the following adaptive
sampling algorithm leads to a set of samples that uniquely
determine the initial signal:
if   y2k+2  = 0   ignore the sample   x2k+1

if   y*
2k+2= 0   ignore the sample   x2k

Iterating  this corollary  to the coefficient sequences y*
characterizing the low-pass components of the analyzed signal
leads to the  following:
Adaptive Sampling Algorithm : Given the conditions of
Theorem 1, a signal x is uniquely determined, if by analyzing its
discrete wavelet transform  y, each time when:
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This association of samples of x with coefficients in the DWT y,
which of course is not the only one - but sure not trivial -
leading to an uniquely determined signal , is presented in Fig. 3,
with running index k set to 0, for easier representation.
Samples belonging to the low-pass sides on lower levels are put
into brackets: [y*], because they are not actually present in the
DWT, since further DW transformed, but are represented in Fig. 3
to contribute to the better visualization of the algorithm.
In practice the algorithm will ignore all those samples that
correspond to coefficients with absolute values smaller than a
threshold d>0. The energy of the error signal obtained through
reconstruction will be:

E= Sy²i < d²ncof                                      (9)
where the index of summation i runs through the set of coefficients
with absolute values smaller than d. This set has the cardinality ncof

(the set of sequences of type y and y* is countable, so it can be
renumbered). If we denote by N the length of an interval of the
signal x and with nsa the number of samples left in this interval
after using the procedure described above., then obviously
N=nsa+ncof, and from eq. (9) we can compute a limit to the error
power:

     P<d²(1-D)       (10)
where D=nsa/N denotes the sampling density. If D is determined
successively for parts of the signal x, then eq. (10) computes the
local mean power of the error. If the reconstruction procedure



assures perfect reconstruction, except for the error introduced by
those coefficients who where considered to be zero if smaller than
d, then rel. (10) represents the noise in the computation of the
reconstruction signal-to-noise ratio associated with the algorithm.

Figure 3.  Adaptive sampling algorithm after a 4 iteration-
level analysis

Observe also that the algorithm is on-line because of the finite
support of the analyzing wavelets, filters h and g in Fig. 1 being
FIR.
The algorithm can be used either by transmitting the remaining
samples of x at the times they occur, or by coding the distance
between subsequent samples (also to be done when storing) and
transmitting it as well. It should be mentioned that the distance in
this discrete setting can be coded without quantization error  and
on less bits then probably the quality of signal would require,
depending on the number of iteration levels.
In either case the positions of the samples and their values are
known at reception, and on this information we further build an
on-line reconstruction algorithm. Observe that the positions of
the arriving samples supply a direct information on which
coefficients of the DWT are 0 (respectively were omitted in the
process of compression), thus determining the subspace the
initial signal x was in.

3. ON-LINE RECONSTRUCTION
OF AN ADAPTIVELY SAMPLED SIGNAL

USING ITERATED PROJECTIONS
 The reconstruction of a signal (vector) x from its image y can be
done by solving the system:

Tx=y                                   (11)
where T denotes the linear mapping (matrix) from l² to l² which
corresponds to the DWT . It is a pseudo-diagonal, infinite matrix
and the transformation is orthogonal. But the system in eq. (11) is
not straightforward to solve (even by known iterative methods):
we know some of the components of x (the incoming samples) and
a number of zero valued coefficients in the image y, found out of
the distances between the samples, providing a number of
equations equal to the number of the components of x to be
determined. This number is arbitrary and depends on the variable
sampling density, that is, it depends on the local frequency
behavior of the signal. Also we do not know at reception, which
will be the values of x to be determined (the unknowns), and in
addition the process of reconstruction should be local, addressing
a limited number of samples at a time.

To perform the reconstruction we use the Neumann expression of
the inverse of a bounded operator, which says that if C is a linear
operator with ||C||<1 then [2]:
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This can be used to obtain for an operator K satisfying:

        x Kx x− < γγγγγγγγγγγγγγγγγγγγγγγγγγγγγγγγγ ,     with  γγγγγγγγγγγγγγγγγγγγγγγγγγγγγγγγγ  < 1                    (13)

an iterative procedure of  recovering  x  from its image  Kx:
             x x K x xn n n+ = + −1 ( )                                           (14)

If operator K is chosen such as to satisfy rel. (13), and such that it
depends only on the incoming samples of the signal x  and on the
distances between them, then Kx is known at reception and x can
be recovered.
We obtain such an operator by constructing an approximation of
the x signal at reception, based only on its samples, and then
projecting this approximation into the subspace in which the x
signal initially was. Following operator is shown in [5] to satisfy
rel. (13):

K = T-1 Q2TQ1   (15)
with:
T: the operator corresponding to the DWT
Q2: the operator setting to 0 all DWT coefficients which were 0

in the initial signal
Q1: the operator setting to 0 all values of the signal which were

not transmitted since determined to be redundant  by the
adaptive sampling performed

Hence K applied to x turns out to do the following: Q1x is the
approximation of x consisting only of the samples that were
transmitted; TQ1x is the projection of the approximation on the
whole image space; Q2TQ1x cuts out components that belong to
subspaces that where empty in the initial signal; T-1Q2TQ1x
returns from the image space to the signal space.
Using K we can reconstruct signal x out of its irregularly
arriving samples through following iterative algorithm:

x0 = Q1x          (16)
xn+1 = xn + K(x - xn) = xn + T-1 Q2T(Q1x - Q1xn)

It may look as if in order to perform the iterations above we
would have to know the entire signal x. But the DWT operator T
is performed by the left side of the iterated filter-bank in Fig.1
and its inverse T-1 by the right synthesis side, both of which
contain FIR filters (the actual computations being done with rel.
4 and 5). This is a local computation and operator K is applied
only to parts of the signal, since at a given moment only a few
wavelets contribute to its construction. The process in rel. (16)
is implemented on-line.

4. EXPERIMENTAL RESULTS AND
CONCLUSIONS

Because of the constant-Q frequency decomposition produced
by the structure in Fig.1,  the adaptive sampling algorithm
follows indeed the instantaneous Nyquist rate required by the
local frequency content of the signal. That is for periods
characterized  by high frequency there are many non-zero y1k

coefficients on the first or lower level (Fig. 3) , so many samples
of x have to be transmitted, whereas in the periods of low
frequency content only y coefficients on the higher levels are
non-zero, so fewer values of x will be kept. Though utilisable
for any kind of signals, the algorithms above are very effective



in the case of non-stationary signals, like speech, where  the
multiresolution analysis promptly detects the shift between
frequency bands.
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Figure 4. 1 second of speech signal, 8192 values
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Figure 5. Reconstructed signal, out of 1289 remaining
values after adaptive sampling  using  rel. (17)  iterated 9
times  
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Figure 6. Detail of reconstruction of the signal in Fig.4:
signal, remaining samples in this interval, iterations in
the on-line reconstruction, illustrating convergence.

Fig. 4 presents one second (8192 values) of a speech signal,
sampled adaptively according to the algorithm in Par. 2, using
an 8-level wavelet analysis, to  result in 1289 remaining
samples. The signal was reconstructed using 9 iterations of

rel.(17), the result being presented in Fig.5. A detail of
reconstruction is presented in Fig.6, where the initial signal, its
few remaining samples in that particular time interval after
adaptive sampling, and its reconstructed versions after 3, 6 and
9 iterations of rel. (17) can be seen. Correctness of
reconstruction and convergence of iterative reconstruction
algorithm are illustrated. Fig. 7 contains the local sampling
density, D in rel (10), where D was obtained averaging the
number of remaining samples over 100 consecutive values of
the signal in Fig.4 In this last figure the adaptive character of the
algorithm comes fully to expression, and the possibility of
estimating an instantaneous frequency suggests itself.
The compression obtained, of about 1 to 8 in Fig. 4 is a usual
figure for an 8 level analysis and is a merit of the wavelets and it
could be argued that there is no need for transmitting (or
storing) the samples of the signal when already having the
coefficients of the DW Transform. But this is a method of
adaptive sampling and there are cases when having the samples
allows a quick estimation of what the signal is about, without
performing the reconstruction. The algorithms also provide an
easy way of finding and handling pauses in signals.
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Figure 7. Instantaneous sampling rate for the signal in
Fig. 4, obtained by averaging the number of remaining
samples over 100 consecutive values of the signal, an
indication of the instantaneous frequency.
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