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ABSTRACT

Autoregressive (AR) modeling has played an important role
in many signal processing applications. This paper is con-
cerned with identification of AR model parameters using
observations corrupted with colored noise. A novel formu-
lation of an auxiliary least-squares estimator is introduced
so that the autocovariance functions of the colored obser-
vation noise can be estimated in a straightforward manner.
With this, the colored-noise-induced estimation bias can be
removed to yield the unbiased estimate of the AR parame-
ters. The performance of the proposed unbiased estimation
algorithm is illustrated by simulation results. The presented
work greatly extends the author’s previous method that was
developed for identification of AR signals observed in white
noise.

1. INTRODUCTION

The problem of fitting an autoregressive (AR) model to a
data sequence of noisy measurements is of great signifi-
cance in many application areas of signal processing. It is
known that the AR estimator usually shows a high sensi-
tivity to the addition of observation noise to the AR model
[2]. This sensitivity, which manifests itself as a severe es-
timation bias, limits the practical application of AR mod-
els in noisy environments. Unfortunately, the literature is
rather insufficient in methods for unbiased parameter esti-
mation of noisy AR signals. Among the existing methods,
there are the the modified Yule-Walker (MYW) equations
method [2], the maximum likelihood (ML) method [6], the
recursive prediction error (RPE) method [3], and the mod-
ified least-squares (MLS) method [4]. But these methods
suffer from various deficiencies.

Recently, the improved least-squares (ILS) method was
proposed for identification of AR signals from measure-
ments contaminated by white noise [7], and it seems to be a
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more promising unbiased estimation algorithm. For exam-
ple, the ILS method involves less computational costs than
the ML, the RPE and the MLS methods. While the MYW
method may suffer from numerical instability in on-line im-
plementation, the ILS method is well suited for adaptive es-
timation. Moreover, the ILS method is not only superior
to the MYW and the ML methods in that it can provide a
direct estimate of the driving noise variance and the obser-
vation noise variance, but also superior to the RPE and the
MLS methods in that it has a much simpler scheme for esti-
mating these noise variances. It is shown in [8] that the ILS
method can be modified to perform unbiased AR parameter
estimation with neither prefiltering noisy data nor making
any parameter transformation.

In this paper, we consider the problem of estimating the
parameters of AR models in the presence of colored noise.
The motivation for this work is that in many practical cir-
cumstances, the observation noise, which contaminates the
AR signal, may be colored rather than white. So the AR
models subject to colored noise can have more widespread
signal processing applications. However, this problem has
receivedlittle attention in the literature. Although the sta-
tistical properties of the least-squares (LS) AR estimator in
the case of colored noise are analyzed in [5], no unbiased
estimation algorithm was proposed there for identifying the
AR signal in such noisy situations. We also note that most of
the methods mentioned above are limited to the case where
there exists only white observation noise.

The aim of this paper is to extend the ILS type method to
the general and practical cases of AR modeling with colored-
noise-corrupted observations. It is shown that the asymp-
totic bias in the standard LS estimator of the AR parameters
is removable provided that the autocovariance functions of
the colored observation noise can be estimated accurately.
To this end, an auxiliary parameter vector is introduced into
the underlying noisy AR system. A novel formulation of the
LS estimator of the introduced parameter vector then pro-
vides a direct way for estimating the noise autocovariance
functions of interest. The unbiased estimate of the AR pa-
rameters follows immediately from application of the bias



correction principle [1]. Theoretical results are confirmed
through computer simulations.

2. PROBLEM FORMULATION

The AR model under study is represented by

A(q�1)x(t) = v(t) (1)

wherefv(t)g is a stationary zero-mean driving white noise
sequence with variance�2v, fx(t)g is a true AR signal se-
quence,q�1 is the unit delay operator, andA(q�1) = 1 �
a1q

�1 � :::� apq
�p. The AR signalx(t) is observed in

colored noise as

y(t) = x(t) +w(t) (2)

wherefw(t)g is a stationary zero-mean colored measure-
ment noise sequence.

We make the two assumptions on the noisy AR system
(1)–(2) under consideration.

A1. A(q�1) has all zeros strictly inside the unit circle, and
the order of the AR modelp is known.

A2. fw(t)g is finitely auto-correlated, namely,

rw(k) � E[w(t)w(t� k)] = 0; for jkj �M (3)

whereE[:] denotes the expectation operator, andM

is a given positive integer. Moreover,fw(t)g is sta-
tistically independent offv(t)g.

Note that Assumption A1 is a standard assumption that
guarantees that the AR model is stable. Assumption A2 ac-
tually implies thatfw(t)g is a moving-average (MA) noise
sequence, and this assumption conforms to a wide range of
practical situations where the observation noise is colored.

Our objective is to arrive at an unbiased estimate of the
AR parametersfai; 1 � i � pg using the colored-noise-
corrupted measurementsfy(t); 1 � t � Ng, whereN
denotes the number of data points.

3. IDENTIFICATION ALGORITHM

3.1. Least-Squares Estimator

We first introduce the following notations:

a> = [a1 ::: ap] (4)

y>t = [y(t � 1) ::: y(t � p)] (5)

w>t = [w(t� 1) ::: w(t� p)] (6)

The noisy AR system (1)–(2) can be expressed in the linear
regression form

y(t) = y>t a+ v(t) +w(t) �w>t a (7)

The LS estimate of the AR parameter vectora mini-
mizes

J = E[(y(t) � y>t a)
2] (8)

and is given by
aLS = R�1y ry (9)

whereRy = E[yty
>
t ] andry = E[yty(t)].

Using (7), (2) and Assumption A2, the autocovariance
vectorry is described as

ry = Rya+ rw �Rwa (10)

whereRw = E[wtw
>
t ] andrw = E[wtw(t)]. Combining

(9) with (10) leads to

aLS = a+R�1y (rw �Rwa) (11)

which gives an expression for the asymptotic bias ofaLS :

�a � a� aLS = �R�1y (rw �Rwa) (12)

Note from (11) and (12) thataLS is an asymptotically bi-
ased estimate ifRw 6= 0 or rw 6= 0. In other words,
the non-zero autocovariance functionsrw(:) of the colored
measurement noisew(t) induce as well as determine the
asymptotic bias�a.

3.2. Estimation of Noise Autocovariances

For convenience of illustration, we assume thatM = p in
the remaining part of the paper, while the case ofM 6= p

may be handled in a similar way without any substantial dif-
ficulties. With this assumption, the condition (3) becomes

rw(k) = 0; k = p; p+ 1; p+ 2; ::: (13)

So in order to implement the bias correction scheme, it suf-
fices to estimate the autocovariance functionsrw(0), rw(1),
..., rw(p� 1), or the autocovariance vectorgw defined by

g>w = [rw(0) rw(1) ::: rw(p� 1)] (14)

For this purpose, we consider identifying the noisy AR
system (7) using a model order of2p instead ofp. That is,
we artificially rewrite the underlyingp-th order noisy AR
system (7) as a2p-th order model:

y(t) = �>t �+ v(t) + w(t)� !>t � (15)

where

�> = [a>; �a>]; �a> = [�ap+1 ::: �a2p] = 0 (16)

�>t =[y>t ; �y>t ]; �y>t =[y(t � p� 1) ::: y(t � 2p)] (17)

!>t =[w>t ; �w>t ]; �w>t =[w(t� p� 1) ::: w(t� 2p)] (18)



In particular, (16) shows that thep zero parameters�ap+1, ...,
�a2p are introduced into the identified noisy AR system.

Similarly to (9), the LS estimate of� is found to be

�LS = R�1y �y (19)

where�Ry = E[yt�y>t ], �ry = E[�yty(t)],

Ry=E[�t�
>

t ]=

�
Ry

�Ry

�R>y Ry

�
; �y=E[�ty(t)]=

�
ry
�ry

�

(20)
Moreover, the asymptotic expression for�LS is given by

�LS = �+R�1y (�w �Rw�) (21)

where�Rw = E[wt �w
>
t ], �rw = E[ �wtw(t)],

Rw=E[!t!
>

t ]=

�
Rw

�Rw

�R>w Rw

�
; �w=E[!ty(t)]=

�
rw
�rw

�

(22)
By the way of finding the LS estimate of the introduced

parameter vector�a via (19) and (21), respectively, and by
means of the condition (13), we can obtain

(R1Q1(a) �Q2(a) �R1T1)gw = �ry �R1ry (23)

where

Q1(a) = [(T0 + T>0 )a ::: (Tp�1 +T>p�1)a] (24)

Q2(a) = [Tpa Tp�1a ::: T1a] (25)

R1 = �R>y R
�1
y (26)

Tj =

�
0 Ip�j
0 0

�
2 Rp�p; j = 1; :::; p� 1 (27)

T0 =
1

2
Ip; Tp = 0 2 Rp�p (28)

The detailed derivation for (23) is omitted here due to lim-
ited space. Equation (23) is the key expression that provides
a way for estimating the noise autocovariance vectorgw.

3.3. ILS-CN Algorithm

On the basis of the above work, an ILS type algorithm is de-
veloped for identification of AR signals subject to Colored
Noise, which is called the ILS-CN algorithm for short.

ILS-CN Algorithm

Step 1. Evaluate the autocovariance estimatesR̂y, �̂Ry, r̂y
and�̂ry using the noisy measurementsfy(t); 1 �

t � Ng, and letR̂1 = �̂R
>

y R̂
�1
y .

Step 2. Set the initial iteration estimate:

â
(0)
ILS � âLS = R̂�1y r̂y (29)

for i = 0, where the superscripti denotes the iter-
ation step.

Step 3. Find the estimate of the measurement noise auto-
covariance vectorgw:

(R̂1Q1(â
(i�1)
ILS ) �Q2(â

(i�1)
ILS ) � R̂1T1)ĝ

(i)
w

= �̂ry � R̂1r̂y (30)

and let

R̂(i)
w=

p�1X
j=0

(Tj+T
>

j )r
(i)
w (j); r̂(i)w =T1ĝ

(i)
w (31)

Step 4. Compute the estimate of the AR parameter vector
a via the bias correction scheme:

â
(i)
ILS = âLS � R̂�1y (r̂(i)w � R̂(i)

w â
(i�1)
ILS ) (32)

Step 5. If convergence is achieved, terminate the iteration
process; otherwise, repeat step 3.

3.4. Remarks

(i) When the measurement noisew(t) is white, namely,
M = 1 in the condition (3), the proposed algorithm
reduces to the ILS method presented in [8], or the
latter is just a special case of the ILS-CN algorithm.
Thus, we have greatly extended the domain of appli-
cation of the ILS based method so that it can handle
the AR signal identification in the presence of colored
noise.

(ii) Since âLS can be evaluated using the recursive LS
procedure [2], the proposed ILS algorithm may be
implemented recursively for on-line estimation. The
relevant procedure has been derived.

(iii) In some signal processing applications, there is need
to know the driving noise variance. To get an estimate
of �2v, we consider the average LS errors given by

J �E[(y(t) � y>t aLS)
2]

=�2v + rw(0) + a>LS(Rwa� rw) � r>wa (33)

The driving noise variance estimate is calculated as

�̂2v=Ĵ� r̂(i)w (0)� â>LS (R̂
(i)
w â

(i)
ILS

� r̂(i)w )+ r̂(i)>w â
(i)
ILS

(34)
whereĴ = 1

N

PN

t=1[y(t) � y>t âLS ]
2.

(iv) The convergence of the ILS-CN algorithm can be an-
alyzed in a similar fashion to the ILS type methods
presented in [7] and [8]. Since it is developed based
on the bias correction principle, the ILS-CN algo-
rithm is well motivated and can produce the unbiased
estimate of the AR parameters. This is verified by the
simulation results given in the next section. Besides,
the fact that the ILS-CN algorithm is built on linear
regression assures that it does not involve any inten-
sive computations. This is another attractive aspect of
the ILS-CN algorithm.



(v) Although the MYW method may be extendible to the
case where the observation noise is an MA noise, the
necessity of use of high order Yule-Walker equations
may further impair its estimation accuracy as well as
numerical efficiency.

4. SIMULATION RESULTS

Computer simulations of the proposed ILS-CN algorithm
have been conducted. The simulated noisy AR system is
described by

A(q�1) = 1� 1:9q�1 + 1:3q�2 � 0:28q�3 (35)

�2v = 1:0; w(t) = (1� 1:0q�1+ 0:2q�2)e(t) (36)

wherefe(t)g is a zero-mean white noise sequence with vari-
ance�2e = 0:1. The signal-to-noise ratio (SNR) is defined
as

SNR= 10 log10
E[x(t)2]

E[w(t)2]
dB (37)

which gives SNR=20dB in this example. The proposed
ILS-CN algorithm was applied for off-line identification,
while the termination criterion was selected as whenever the
relative error between two consecutive AR parameter esti-
mates is less than0:001. Table 1 displays the arithmetic
means and standard deviations of the estimateda1, a2, a3,
�2v, rw(0), rw(1) andrw(2) based on 100 independent tests
of N = 2000 data points. The results by the standard LS
and the MYW methods are also included in the table for
comparison. As expected, the ILS-CN algorithm produces
the estimates with desirable accuracy in the presence of col-
ored noise. Also, the proposed algorithm is less computa-
tionally demanding. We notice that the standard LS esti-
mates are seriously biased while the MYW method fails to
work properly.

5. SUMMARY

The primary contribution of this paper is that some signifi-
cant extensions on the recently proposed ILS method have
been made, with a view to identifying AR signals subject to

Table 1. Simulation Results
(RE= kâ� ak=kak, NFPT= No. of flops per test, NIPT= No. of iterations per test)

method a1 a2 a3 �2
v

rw(0) rw(1) rw(2) RE NFPT NIPT
LS 1.2682 �0.2014 �0.2876 — — — — 59.87% 36163 —

�0.0228 �0.0364 �0.0226

MYW 0.6774 0.5654 �0.5967 — — — — 103.34% 84180 —
�5.7771 �8.6402 �3.9740

ILS-CN 1.8393 �1.2048 0.2358 0.9586 0.2267�0.0820 0.0087 5.23% 105140 7.1
�0.5877 �0.4152 �0.2840 �0.8259 �0.5954 �0.2679 �0.1056

true value 1.9 �1.3 0.28 1.0 0.204 �0.12 0.02

colored noise. A useful expression has been derived for esti-
mation of the autocovariance functions of the colored mea-
surement noise. This is the key to implementing the bias
correction scheme so as to achieve the unbiased estimate of
the AR parameters. The developed ILS-CN method can be
used for both off-line and on-line estimation of AR signals
in the presence of colored noise. Results of Monte-Carlo
simulations verify the theoretical analysis.

6. REFERENCES

[1] P. N. James, P. Souter and D. C. Dixon, “Suboptimal
estimation of the parameters of discrete systems in the
presence of correlated noise,”Electronics Letters, vol.8,
pp.411-412, 1972.

[2] S. M. Kay, Modern Spectral Estimation. Englewood
Cliffs, NJ: Prentice-Hall, 1988.

[3] A. Nehorai and P. Stoica, “Adaptive algorithms for
constrained ARMA signals in the presence of noise,”
IEEE Trans. Acoustics, Speech, and Signal Processing,
vol.36, pp.1282-1291, 1988.

[4] H. Sakai and M. Arase, “Recursive parameter estima-
tion of an autoregressive process disturbed by white
noise,”Int. J. Control, vol.30, pp.949-966, 1979.

[5] P. Stoica, A. Nehorai and S. M. Kay, “Statistical anal-
ysis of the least squares autoregressive estimator in the
presence of noise,”IEEE Trans. Acoustics, Speech, and
Signal Processing, vol.35, pp.1273-1281, 1987.

[6] H. Tong, “Autoregressive model fitting with noisy data
by Akaike’s information criterion,”IEEE Trans. Infor-
mation Theory, vol.21, pp.476-480, 1975.

[7] W. X. Zheng, “Identification of autoregressive signals
observed in noise,” inProc. 1993 American Control
Conference(ACC’93), San Francisco, California, USA,
vol.2, pp.1229-1230, June 1993.

[8] W. X. Zheng, “An efficient algorithm for parameter es-
timation of noisy AR processes,” inProc. 30th IEEE
International Symposium on Circuits and Systems(IS-
CAS’97), Hong Kong, vol.4, pp.2509-2512, June 1997.


