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ABSTRACT

This paper presents a combined two-component system
for language identi�cation based on phonotactic and acou-
stic features. The phonotactic part consisting of a mul-
tilingual phone-recognizer with a double bigram-decoding
architecture and a phonetic-context mapping is supported
by a second part with pronunciation modeling of the re-
cognized phone-sequence using Gaussian density models.
Both parts are post-processed by a neural-based �nal clas-
si�er. Measured on the NIST'95 evaluation set, the descri-
bed system outperforms state-of-the-art components and,
at the same time, requires considerably less computational
expense, as compared to implicit phonotactic-acoustic mo-
deling and parallel recognizer architectures.

1. INTRODUCTION

With the trend in globalizing the communication techno-
logy and providing services to a wide, multilingual public,
the ability of machines to distinguish between languages
has become increasingly important. Automatic language
identi�cation (ALI) �nds its application potential in multi-
language spoken dialog systems, such as information termi-
nals, databases, or archives, as well as in the human-human
communication (call-routing, automatic translation).

During the past decade intensive research e�orts have
been made covering di�erent solutions for ALI. Several sour-
ces of language-discriminative information have intuitively
been addressed as relevant for this task: the prosody, the
acoustics, and the grammatical and lexical structure.

Besides prosodic and acoustic features [1], a very pro-
mising and feasible way of acquiring language-speci�c in-
formation is the modeling of statistical constraints inherent
in phonetic chains - the phonotactics. In this sense pho-
notactics can be viewed as a subset of grammatical and
lexical rules of a language. Several contributions were pu-
blished dealing with the use of phone n-grams, particularly
bigrams, for modeling and classifying languages [2], [3]. Va-
rious con�gurations of multiple language-dependent phone-
recognizers, run in parallel, were designed to better repre-
sent the phone repertoire and to improve the performance
of simple phonotactic components. In [4] a double-bigram
decoding architecture was introduced employing a single
multi-language decoder with separate sets of language mo-
dels within and outside the phone-recognizer, which outper-

formed the parallel architecture and reduced the computa-
tional expense.

Despite the high e�ciency of the phonotactic features
it seems obvious that only a way of incorporating multiple
sources of knowledge will lead to the robustness necessary
for practical applications. In [2] taking the phone durati-
ons proved to increase the identi�cation accuracy. Another
combination, namely implicit phonotactic and acoustic mo-
deling, was done in [3] by using several language-dependent
phone-recognizers with implicit language models where the
resulting acoustic likelihoods were taken for the �nal clas-
si�cation. In both cases the computational costs were con-
siderable due to the multiple recognition process.

This contribution presents recent development of our
ALI system [5] toward a multi-approach solution that ex-
ploits acoustic pronunciation di�erences between languages
by Gaussian probability density models and combines these
features with the phonotactics using a neural-based classi-
�er. Hereby, the system is considered as e�ective in terms
of improved performance and less computational expense,
as compared to parallel decoder architectures.

In section 2 a description of the phonotactic component
serving as the baseline system in this work is given. The
acoustic features and models are dealt with in section 3.
Subsequent sections detail on the �nal classi�er, the data-
bases, and give the experimental results obtained with the
new system.

2. PHONOTACTIC COMPONENT

As the phonotactic component the system described in [5]
was employed. Here, a multilingual phone-recognizer and a
double bigram-decoding architecture applied, as shown in
Figure 1 (Block 1). During the Viterbi decoding process,
M (=6) language-dependent bigrams are used to weight the
transitions between individual phones thus generating M

phone-streams. With each stream an independent set of N
language models is connected. Resulting scores are com-
bined together and fed to the �nal classi�er. The bigrams
used within the Viterbi-decoder were estimated on origi-
nal transcriptions in six languages, whereas the language
models were trained on the corresponding decoded phone-
streams. This proved to outperform the parallel-decoder
systems and was, at the same time less computationally ex-
pensive as the decoder can carry out a synchronous Viterbi
pass for all streams [4].
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Figure 1: ALI system overview: (1) - Phonotactic block, (2) - Acoustic block.

Further on, for language modeling standard bigrams
were combined with additional models to capture a wider
phonetic context [5]. While the bigram acquires statistical
dependencies of phone pairs, the so-called selection-matrix
(SM) bigram gets information from phone triples, and a
binary-decision tree (BT) model exploits constraints from
up to three preceding phones. The additional models were
shown to consistently improve the performance of the bi-
gram models without the need for additional training data.
The training procedures for both the SM and the BT mo-
dels can be found in [5].

Given a spoken utterance decoded intoM phone-streams

a(l) = a
(l)
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T

(l = 1; :::;M) the �nal phonotactic score
of a language Li (i = 1; :::;N) is calculated as the sum over
all stream-dependent scores:
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=
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Sbi(a
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(l) j Li) + �T (a(l) j Li);

with Sbi, Ssm, and T denoting the log-scores for the bi-
gram, the selection-matrix, and the binary-tree model res-
pectively, and �; � being empirical weights. The resulting
phonotactic scores SPT (a j Li) are fed to the �nal classi�er.

3. ACOUSTIC COMPONENT

Due to the fact that the phone-recognizer is trained on
multilingual data the phones are supposed to be recogni-
zed independently of the language being spoken. Thus, the
acoustic di�erences of individual phones among languages
can be acquired by modeling the language-speci�c pronun-
ciation of each token from the phone-repertoire. A simi-
lar way to address the acoustic patterns was chosen in the
segment-based approach by Hazen and Zue [6].

As depicted in Figure 1 the acoustic component (Block
2) consists of a set of language-dependent pronunciation
models for each of the phones. During the classi�cation, the

decoded sequence together with phone boundaries is used
for calculating acoustic language-hypotheses. For this, the
original feature sequence is taken from the feature extrac-
tion block.

To calculate the score of a phone segment a certain num-
ber of feature vectors are cut out from the segment center
(core vectors), averaged, and the resulting mean vector is
put in the phone-dependent acoustic models of all langua-
ges. For a complete phone sequence the acoustic language
score a = a1; :::; aT is calculated as follows:

SAc(a j Li) =
1

T

TX

t=1

log Pr(vt j at; Li); for i = 1; :::;N

whereby vt denotes the acoustic evidence (mean vector) of
the phone at the time t. The acoustic scores SAc(a j Li)
are then fed in the �nal classi�er which combines them with
the phonotactic component in a non-linear way. For mo-
deling the acoustic patterns Gaussian probability density
(GPD) models with an adaptive number of mixtures were
employed.

The option to take a variable number of the core vec-
tors from the phone segment (up to the complete segment)
allowed to study the inuence of coarticulations near the
phone boundaries on the acoustic modeling (see Section 6).

It has to be noted that there are six di�erent phone
sequences emanating from the phone-recognizer which all
supply possible phone boundaries for the acoustic compo-
nent. The experiments, however, indicate that the perfor-
mance of the acoustic models does not signi�cantly depend
on the stream used.

Optionally, also phone-dependent durations were inclu-
ded into the feature vectors thus extending the pure acou-
stic evidence by a �rst fundamental prosodic element.



4. FINAL CLASSIFIER

For the �nal classi�cation including both the phonotac-
tic and the acoustic scores a multi-layer perceptron with
one hidden layer was applied to make the language de-
cision. Perceptron classi�ers are known to separate well
non-linearly dependent information sources and proved to
be superior to linear maximum-likelihood classi�ers in our
preliminary experiments.

5. IMPLEMENTATION

5.1. Databases

Up to nine languages from three multilingual speech cor-
pora were used in the experimental work.

For training the phone recognizer, the phonotactic mo-
dels, as well as the acoustic densities the OGI Multi-Lan-
guage Telephone Speech Corpus [7] was taken, as described
in [5]. Here, the acoustic models shared the training subset
with the phonotactic language models (60 \45s-stories" per
language). For training and cross-evaluating the neural-
based �nal classi�er the same languages from the new 22-
language corpus collected at OGI [8] were used. The ca.
100 calls per language were processed by both system com-
ponents whereby one half of the resulting scores served for
training the network weights and the other half served for
cross-validation. Calls from non-native speakers and those
with a poor intelligibility or bad channel conditions were
not included in the �rst half. Final results presented in this
paper were obtained using the NIST1 evaluation test set
from March '95 which consisted of ca. 20 45-second phone
calls and ca. 80 10s-excerpts from them in each language.

5.2. Training the acoustic models

For each phone a set of language-dependent GPD models
with diagonal covariances was trained. K-means procedure
was used to group the mean vectors of a phone into an
optimal number of clusters from which the initial mixture
parameters were estimated. Subsequently, the parameters
were iteratively re-estimated according to the well-known
Baum-Welch formulae. On average, there were seven mix-
tures per phone GPD. Complete vectors containing twelve
Mel-warped cepstral coe�cients, energy as well as their �rst
derivatives were taken from the feature extraction and the
cepstral mean substraction was carried out to compensate
channel variations. Optionally, the segment duration was
incorporated in the vectors as the 27-th feature dimension
of the GPD.

6. EXPERIMENTS

Performance of the proposed system was tested using a clo-
sed set of six languages from the NIST evaluations invol-
ving English, German, Hindi, Japanese, Mandarin Chinese,
Spanish, plus three other languages completing the nine

language task: French, Tamil, and Vietnamese.
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# of CV 1 3 7 14 ALL
Error rate 56.8% 56.9% 51.2% 51.2% 56.6%

Table 1: Acoustic performance versus number of the core
vectors (CV) averaged

SD only 68.0%
7 CV 51.2%

7 CV+SD 49.8%
7 CV+SD+BW 48.9%

Table 2: Inuence of the segment duration (SD) and Baum-
Welch re-estimation (BW)

6.1. Acoustic experiments

In order to examine various parameter con�gurations, the
acoustic component was evaluated in isolation �rst. All
results were measured on the six-language-task with 10s-
test utterances.

In the �rst experiment the inuence of the phone-stream
choice was analysed. The performance of the acoustic mo-
dels was measured for each of the six phone-streams as well
as with a special unigram-stream when no bigram was ap-
plied within the phonetic decoding. The results for all stre-
ams varied merely within a 4%-range. Thus the acoustic
component can be viewed as nearly insensitive to the de-
coding stream chosen. For further examinations, only the
stream 1 (English-bigram) was considered.

The acoustic patterns of the phones are known to vary
with the phonetic context due to coarticulation e�ects. Ideal
models should be context dependent and describe realisati-
ons with all possible contexts. Due to the sparseness of the
data, however, the training must be restricted to context-
independent models, i.e. phone realisations regardless of
the context were taken for the parameter estimation. To
examine the inuence of the coarticulation variations of
the vectors adjacent to the phone boundaries an experi-
ment with variable number of feature vectors taken from
the center of each phone was carried out. Table 1 shows
the acoustic language error rate for di�erent numbers of
averaged core vectors (CV) ranging from 1 to complete seg-
ment (ALL). It can be seen that discarding the vectors near
the phonetic boundary leads to better results due to redu-
ced feature variations. On the other hand, taking too few
vectors from the center results in a decreased robustness of
the mean vector (1 and 3 CV). Seven core vectors were con-
sidered as su�cient and were taken for further experiments
(for shorter phones all available vectors were used).

Results of another experiment, shown in Table 2, give
the performance of the segment-duration feature (SD) alone
and in combination with the complete acoustic vector which
resulted in a slight improvement. After re-estimating the
GPD models using the Baum-Welch formula (BW) the �nal
error rate of the acoustic component decreased to 48.9%.

An interesting question was the relative importance of
di�erent phone classes in the overall acoustic perfomance.



Vowels Others Complete set
54.0% 51.7% 48.9%

Table 3: Relative performance of vowels and other phone
classes

6-Lang. 9-Lang.
Con�guration 10s 45s 10s 45s

AC-Component 48.9% 48.3% 51.3% 47.8%
PT-Component 12.8% 3.3% 22.6% 9.4%
Combined (MLP) 9.8% 0.8% 14.7% 5.6%

Table 4: Error rates on 10/45s utterances in the six- and
nine-language-task (NIST'95)

In Table 3 error rates are given for cases where either (a)
only vowels, or (b) all phones except vowels were used. Both
groups in separation performed worse than using the com-
plete phonetic repertoire.

Other accompanying experiments with the relative im-
portance of individual phones indicated that the phone con-
tribution to the overall accuracy varies from phone to phone
and is dependent on the languages in the task. However, no
improvement was achieved by excluding less relevant pho-
nes from the acoustic modeling.

6.2. Final Results

For evaluating the �nal system the acoustic and phonotac-
tic scores were calculated for six and nine languages and
normed within the range [-1,1] for the MLP-classi�er. The
training of the network was done on the two development
sets as described in section 5, whereby multiple training
runs with di�erent start random seeds were carried out to
prevent outlier results.

Table 4 shows the language error rates in both language
tasks for the two test lengths, measured on the NIST data.

In spite of the relatively poor accuracy of the acou-
stic models used in separation, adding this information to
the phonotactic component consistently improved the over-
all performance. In particular, considerable improvements
were achieved in the nine-language-task where the phonot-
actics in isolation su�ered from the absence of bigrams for
the three additional languages within the decoder.

There is a noticeable di�erence between the two compo-
nents in the concern of error rates and test lengths: while
the robustness of the phonotactic scores increases with lon-
ger utterances, the acoustic models seem to exhaust their
potential within shorter sequences already, so that the per-
formance does not di�er signi�cantly for the two legths.

Final language error rates 9.8%/0.8% and 14.7%/5.6%
were reached for 10s/45s utterances in the six- and nine-
language-task respectively, which corresponds to improve-
ments by 23%/76% and 35%/40% relative to the phono-
tactic component (baseline system).

7. DISCUSSION

As expected, the results proved that the performance of
an ALI-system can be increased by incorporating multi-
ple information sources. While acoustic modeling in isola-
tion supplied rather insu�cient results (being comparable
to other work [6]) it can serve with success as a component
supporting the phonotactic analysis.

Beside the fact that the described system outperforms
comparable systems [2][3], the obvious advantage is a smal-
ler computational expenditure. Whereas in the implicit
phonotactic-acoustic modeling [3] the acoustic probabilities
are computed at each node in the trellis for several phone-
recognizers, in this system just the scores for the recognized
phone-sequence are required. Further on, additional lan-
guages may be added to the system without the need for
manually labeled data.

Future research should address further extension to pro-
sodic features as well as a robust way for language rejection.
Also, the question of how to handle non-native speakers re-
presents an open problem. For non-native speakers a di-
vergent behaviour of the two components can be expected.
Such a fact might be used for non-nativity detection connec-
ted with a proper system response.
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