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Abstract

We define two classes of BTP’s which are represented by

A Block Transform Packet (BTP) is an orthonormal block Fig.2[5,_6,7]. . . .
transform which is constructed from conventional block 1) the time-localizable BTP(TLBTP) is based on a transformation

transforms and represents an arbitrary tiling of the time-frequenc§){ @ frequency selective block transform (e.g. DCT) with a T-F
plane.[5] Unlike the progenitor transforms, the BTP has |I!ng pat_tern as in Flg.l_(a) _|nto an orthonormal block transform
time-localizabilities and is capable of dealing with non-stationaryVith desired features as in Fig.1(€). _

signals. This paper describes procedures for signal decompositigd 1he frequency localizable block transforms packets is the

using the BTP in an adaptive way. Three examples show theonceptual dual of the TLBTP. It transform the time localized
adaptive compression efficiency over DCT. Kronecker delta basis sequences with T-F pattern as in Fig.1(b)

into a desired pattern as in Fig.1(e). Details are found in [5].

| Introduction In TLBTP, the original frequency-focused transform looks like a

Block transforms such as the DCT, DFT and Walsh-Hadamar@@nk of band-pass filters with impulse responses extending over

transform are widely used as suboptimal solutions for signa‘ihe entlre_tl_me framfe. As |nd|cated_|n Fig.2, we partition the _entlre

decomposition. These transforms have orthogonal bases and f&§t Of original basis sequences into subsets and then find the

computational algorithms. However, these basis functions result jfPtimal unitary submatricesi such that the new basis sequences

a uniform time-frequency(T-F) resolution grid, as indicated in&'® time-localized in accordance with the desired T-F tiling

Fig.1(a), which is not suitable for processing time-localized and?attem.

non-stationary signals. On the other hand, the Kronecker delta

sequence has the time-localized T-F pattern, as shown in Fig.1(b), ‘ . . L .

which obviously can not resolve frequency concentrated signalg ¢4Uency resolution for desired time localization. ~Consider a

In these diagrams, the time-frequency tile or cell of a particulal (¢) SPace of dimension N with a given set ohortormal basis

basis function is the region in the time-frequency plane whersequencesP(n) = ¢i(n) j;n = 0,1,.N-1}; we make partitions

most of that function’s energy is concentrated[4]. These tilingdnto orthogonal subspaces of dimensibhx spanned by an

represen8x 8 block transforms. associated subset M« basE®m, : Zk M« =N}.  Then we may
find new orthonormal basis sequend¥®) = w{(n) jn =

The discrete Wavelet Transform (DWT) has the nonuniform0,1,...N-1}, as follows:

dyadic T-F tiling pattern[1][3], shown in Fig.1(c) for three stages

of decomposition. The more general wavelet packet (WP)[2][81 o(n) O Ao 0 OO0 ¢go(n) O

can realize arbitrary tilings,as in Fig.1(d). The DWT and WP y4(n) %_% Ay $1(n)

0

In accordance with the uncertainty principle[3], we trade

@

tilings are based on frequency segmentation.

g v 0 "~ 00 ra(0) 0

On the other hand, a block transform packet (BTP)[5] can b
based on either frequency or time segmentation and is an efficient
alternative to the WP. The BTP is an orthonormal block transform ‘¥(n)
which represents an arbitrary time-frequency tiling pattern. Given
desirable T-F tiling pattern, BTP can be synthesized frorthe NxN matrixA is a diagonal block matrix which maps the
conventional block transforms in an optimum way, whileentire block transform bases s@(n), into the entire TLBT bases
maintaining the computational efficiency of the progenitorset ¥(n). The Mx My coefficient matrix A is constrained to be a
transforms. Unlike the time-varying tree structure in [4][8], hergnjtary matrix,i.e. Ac A*=1 , where' is the hermitian operator. In

no boundary or transition filters are needed in the transitions aRéhch subspace, the new hmmormal basis sequence,
the tree structure associated with the desired tiling pattern cougl(n) ={y\(n): i=0,1,...M-1, n=0,1,...N-1} is a linear

be time-varying. For example, Fig.1(e) is a BTP which can not bg,mpination of theviy original bases f#io(N), ¢, (N), -+, P (M}
realized t?Y an8x8  time-invariant frequency concentrateguch that eaclrk(n) maximally concentrates its energy in the time
decomposition tree structure. interval i={i(N/M\) < n < (i+1)(N/My)-1}, and {;} span the entire

transform frame of lengthl. Equivalently, we minimize the energy
II BIOCk Tl’anSfOI’m PaCketS outsideh, expressed as

A @(n)



The most energetic resolution cell ihis the rectangular region
J= X | wi(n) |2 ) which is compose_d qf N _microcells and has the maximum energy
nel strength. Our objective is to sear€¥{P;}, the pattern of N
) ) ) ) energy microcells in the T-F plane, to find the feasible pattern of N
The result is that, thei" row of A, is the eigenvector of the resolytion cellsz;, 0<i<N-1, such that the signal energy is

maitrix optimally concentrated in as few cells as possible. We can perform
Ei= 2 O(n)@i(n) 3 an exhaustive search Bfusing rectangular windows of size N to
nel ®) find the most energetic resolution cell, and then the second most

energetic resolution cell, and so on. With some assumptions, we
For computation efficiency, we can use the inverse block transforf@n improve the search efficiency as follows. Assume that the most
matrix as the approximation solution fé%. From Eq.(1), the energetic microcelP’; is included in the most energetic resolution

location and shape of the resolution cell determine the location afifill Z - We search the neighborhoodfj to find the rectangular
size of localizing matris . cluster of microcells with the most energy. That cluster defines the

most energetic resolution célli. Therefore, starting from the most

As an sample example, we can convert a 64-point DCT witgnergetic microcell, we regroup the microcells to find the most
Fig.1(a) localized tiling pattern into the TF pattern shown irEnergetic resolution cell. The procedure is as follews:

Fig.3(a). The energy distribution of the basis functions for L
resolution cells 1 and 3 are shown in Fig.3(b)(c). 1) Rank order?; , and put the rank ordered indey)(in idx(.).
idx(1) is the index of the most energetic microcell.

2) Calculate the rectangular areaspecified byidx(1) andidx(2).
Ay = (ir-iz+1) (1-j2+1). If A1 < N, then both microcells are included

Since we have a procedure to determine optimally concentrat¥fithin or on the border of a resolution cell. If A N, these two
basis functions from T-F pattern, the next concern is how t@licrocells can not be included in the same resolution cell.
determine the best T-F decomposition pattern for a given signal) 1€St the third ranked microcell. If it is inside Afine. If it is
In this paper, we develop a procedure to determine the optim@ytside A, calculate Awhich includs A andidx(3). Test A .

T-F decomposition for a given frame of signal. From this tiling®) Repeat test until A=N. The location of A« is the most
pattern, the associated BTP is generated as described herein. TfI§rgetic resolution cefl’.

procedure can be adapted from frame to frame.

[ll. Optimal Decomposition in T-F Plane

Repeat this search for next most energetic resolution cell and a

A resolution cell is a rectangle of constant area and a givésPmplete optimal T-F tiling pattern can be obtained. This

location in the time-frequency plane. The tiling pattern is thé)roc_edure is te@ous anq not practical fo_r_large transforms. In r_1ext
partitioning of the time-frequency plane into contiguous resolutiof€ction, we will describe a more efficient way, an adaptive

cells. This is a feasible partitioning. Each coefficient of the nev@PProach.

transform represents the signal strength associated with a

resolution cell. We want to find the tiling pattern corresponding to IV. Adaptive Approach

maximum energy concentration for that particular signal. From

energy compaction point of view, the tiling pattern should b&he objective of the proposed method is to expand our signal in
chosen such that the energies concentrate in as few coefficientstersns of a BTP basis functions in a sequential fashion, i.e., find

possible. one resolution cell from a succession of N T-F tiling patterns rather
than N cells from one T-F pattern. Fig.4 suggests the following
A. Microcell Approach adaptive scheme:

The Kronecker delta sequence resolves the time domail) Start at the stage g=1. We constrBetfrom f(n) and use the
information and the frequency selective block transforms providmicrocell and search algorithm described in Section 1ll to find the
the frequency information. Combining these two characterizationsaost energetic resolution cell with its associated basis function
together gives the energy sampling grid in the time-frequenayi(n)and block transform packeTs. The projection off(n) onto
plane. Letx represent the amplitude square of the funcfioly  y1(n)gives the coefficienf1 and our first approximation
0<n<N-1  attimet andy be the magnitude square of the

coefficient of the frequency selective block transform (e.g. DCT) at fl(n) = Bay1(n) (4)
frequency slotfi. Take outer product of these two groups of

samples,P; = x ¥ , ij=0,1,...,N-1, and eacR; represents the 5 rare the residuai(n) as the input to the next stage where
energy strength in the corresponding area in the time-frequency

plane. The area corresponding to e&hs called a “microcell”. £10n) = f(n) = f1(n) = f(n) n
P={P;} is the microcell energy pattern for a given signal. Totally () =) = () = 1) = faya(n)
we have R microcells and each resolution cell is composed of . F .
microcells. Therefore, our task here is to regroup the microcel Repeat (1) and (2) for g>1 where the residual sidrfe) ith at

such that the tiling pattern has the maximum energy concentratiory129€ 1S

®)

fi(n) = fia(n) = fi(n) =fi-a(n) = Biwi (n) (6)
B. Search for the Most Energetic Resolution Cell
and vi(n) is the most energetic basis function corresponding to



tiling patternP; and BTPT..

adaptive compression efficiency over DCT. Other applications

such as excision of interference signal in spread spectrum

In general, the basis functiongi(n) are not othonormaaith

communication system and adaptive tracking of most energetic

other. However, in each stage the BTP is an unitary transform aresolution cell from frame to frame are under study.

and [fia(m > Ifi()Il.  Thus the
monotonically decreases and converges

therefore, If()] > If(n)l|
norm of the residualfi(n)
to zero.

[1]
Because this representation is adaptive, it will be generally
concentrated in a very small subspace. As a result, we can us@h
finite summation to approximate the signal with a residual error as
small as one wishes. The approximated signal can be expressed as

L (3]
=X Biyi(n) @
i=1
: o [4]
The error energy for that frame using L coefficients is
N-1
Q= X |fun)|?
n=0 (8) [5]
For long-length signal, this scheme can be adapted from frame to
frame. 6]
V. Examples

Three examples are given to show the energy concentrati¢ri
property of the adaptive BTP. The BTP is constructed from a DCT
base with block size 32. In each example the signal lendib2i4.

The data sequence is partitioned into 32 frames consisting of 32
samples per frame. For each frame, we compute the resfc(u)al (8]
and the corresponding error ener§y 1<i<4. The average of
theseQi's over 32 frames is plotted in Fig.5.

Fig.5(a) shows the energy concentration property in terms of
number of coefficients for a narrow band gaussian signalith
bandwidth = 0.2rad and central frequen(:%”—). Due to the
frequency localized nature of the signal, BTP does not have much
improvement over DCT.

The signal used in Fig.5(b) is a narrowband gaussian sigpi$S
time-localized white gaussian noise with 10% duty cycle. S
Basically, it is a combination of frequency-localized and
time-localized signals and therefore, it can not be resolved in time
or frequency domain. Fig.5(b) shows the result for power
ratio(S/Sz) = -2dB and Fig.5(c) is the case for -8dB. Both figures
demonstrate that BTP is a more efficient compression engine over
DCT.

VI. Conclusions

We have described an adaptive procedure for signal decomposition
in the T-F plane. Taking one frame of signal, we use the microcell
approach to search the location and shape of the most energetic
rectangular resolution cell and generate the corresponding basis
function. After that, we take the residual signal as the next stage
input signal and repeat this procedure until the residual error
converges to as small as one wish. Three examples show the
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Fig.1. Tiling pattern for resolution cells in (a) frequency localized
BT (b) time localized BT (c) discrete WT (d) WP (e) BTP.
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Fig.3. Energy distributions of TLBT basis sequences in both timeig 5. Compression efficiency comparisons for (a) narrowband
and frequency domain. (a) desired tiling pattern. (b)(n) fogaussian signal:$b) S plus time localized gaussian signavgth
Cell 1 in Fig.3(a). (c)w2(n) for Cell 3 in Fig.3(a). power ratio 9S,=-2dB (c) S+S; for -8dB.



