
Abstract

A Block Transform Packet (BTP) is an orthonormal block
transform which is constructed from conventional block
transforms and represents an arbitrary tiling of the time-frequency
plane.[5] Unlike the progenitor transforms, the BTP has
time-localizabilities and is capable of dealing with non-stationary
signals. This paper describes procedures for signal decomposition
using the BTP in an adaptive way. Three examples show the
adaptive compression efficiency over DCT.

I. Introduction

Block transforms such as the DCT, DFT and Walsh-Hadamard
transform are widely used as suboptimal solutions for signal
decomposition. These transforms have orthogonal bases and fast
computational algorithms. However, these basis functions result in
a uniform time-frequency(T-F) resolution grid, as indicated in
Fig.1(a), which is not suitable for processing time-localized and
non-stationary signals. On the other hand, the Kronecker delta
sequence has the time-localized T-F pattern, as shown in Fig.1(b),
which obviously can not resolve frequency concentrated signals.
In these diagrams, the time-frequency tile or cell of a particular
basis function is the region in the time-frequency plane where
most of that function’s energy is concentrated[4]. These tilings
represent block transforms.8� 8

The discrete Wavelet Transform (DWT) has the nonuniform
dyadic T-F tiling pattern[1][3], shown in Fig.1(c) for three stages
of decomposition.  The more general wavelet packet (WP)[2][8]
can realize arbitrary tilings,as in Fig.1(d).  The DWT and WP
tilings are based on frequency segmentation.

On the other hand, a block transform packet (BTP)[5] can be
based on either frequency or time segmentation and is an efficient
alternative to the WP. The BTP is an orthonormal block transform
which represents an arbitrary time-frequency tiling pattern. Given
desirable T-F tiling pattern, BTP can be synthesized from
conventional block transforms in an optimum way, while
maintaining the computational efficiency of the progenitor
transforms.  Unlike the time-varying tree structure in [4][8], here
no boundary or transition filters are needed in the transitions and
the tree structure associated with the desired tiling pattern  could
be time-varying. For example, Fig.1(e) is a BTP which can not be
realized by an  time-invariant frequency concentrated8� 8
decomposition tree structure.

II. Block Transform Packets

We define two classes of BTP’s which are represented by
Fig.2[5,6,7].
1) the time-localizable BTP(TLBTP) is based on a transformation
of a frequency selective block transform (e.g. DCT) with a T-F
tiling pattern as in Fig.1(a) into an orthonormal block transform
with desired features as in Fig.1(e).
2) The frequency localizable block transforms packets is the
conceptual dual of the TLBTP. It transform the time localized
Kronecker delta basis sequences with T-F pattern as in Fig.1(b)
into a desired pattern as in Fig.1(e). Details are found in [5].

In TLBTP, the original frequency-focused transform looks like a
bank of band-pass filters with impulse responses extending over
the entire time frame. As indicated in Fig.2, we partition the entire
set of original basis sequences into subsets and then find the
optimal unitary submatrices Ak such that the new basis sequences
are time-localized in accordance with the desired T-F tiling
pattern.

In accordance with the uncertainty principle[3], we trade
frequency resolution for desired time localization.  Consider a
l2(Z) space of dimension N with a given set of orthonormal basis
sequences,  = { : j,n = 0,1,...,N-1}; we make partitions��(n) & j(n)
into orthogonal subspaces of dimension  spanned by anMk

associated subset of  bases, Then we mayMk {�Mk : �k Mk = N}.
find new orthonormal basis sequences, {  : j,n =��(n) = ) j (n)
0,1,...,N-1}, as follows:
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The  matrix A is a diagonal block matrix which maps theN�N
entire block transform bases set,  into the entire TLBT bases��(n),
set,  The Mk  Mk coefficient matrix Ak is constrained to be a��(n). �

unitary matrix, i.e. Ak Ak*= I  , where * is the hermitian operator. In
each subspace, the new orthonormal basis sequence,

i=0,1,...,Mk-1, n=0,1,...,N-1}, is a linear��k(n) = {)ki (n) :
combination of the Mk original bases { &k0(n),&k1(n),�,&kMk−1(n)}
such that each  maximally concentrates its energy in the time)ki (n)
interval Ii={ i(N/Mk)  n   (i+1)(N/Mk)-1}, and {Ii} span the entirex x

transform frame of length N. Equivalently, we minimize the energy
outside Ii, expressed as
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(2)Ji
� = �

n� I i

[ )ki (n) [2

The result is that ui, the i th row of Ak, is the eigenvector of the
matrix  

(3)
Ei = � �k(n)�k

	(n)
n� I i

For computation efficiency, we can use the inverse block transform
matrix as the approximation solution for Ak. From Eq.(1), the
location and shape of the resolution cell determine the location and
size of localizing matrix Ak .

As an sample example, we can convert a 64-point DCT with
Fig.1(a) localized tiling pattern into the TF pattern shown in
Fig.3(a). The energy distribution of the basis functions for
resolution cells 1 and 3 are shown in Fig.3(b)(c).

III. Optimal Decomposition in T-F Plane

Since we have a procedure to determine optimally concentrated
basis functions from T-F pattern, the next concern is how to
determine the best T-F decomposition pattern for a given signal.
In this paper, we develop a procedure to determine the optimal
T-F decomposition for a given frame of signal. From this tiling
pattern, the associated BTP is generated as described herein. This
procedure can be adapted from frame to frame.

A resolution cell is a rectangle of constant area and a given
location in the time-frequency plane. The tiling pattern is the
partitioning of the time-frequency plane into contiguous resolution
cells. This is a feasible partitioning. Each coefficient of the new
transform represents the signal strength associated with a
resolution cell. We want to find the tiling pattern corresponding to
maximum energy concentration for that particular signal. From
energy compaction point of view, the tiling pattern should be
chosen such that the energies concentrate in as few coefficients as
possible.

A. Microcell Approach

The Kronecker delta sequence resolves the time domain
information and the frequency selective block transforms provide
the frequency information. Combining these two characterizations
together gives the energy sampling grid in the time-frequency
plane. Let xi represent the amplitude square of the function f(n),

, at time ti and yi be the magnitude square of the0 > n > N − 1
coefficient of the frequency selective block transform (e.g. DCT) at
frequency slot fi.  Take outer product of these two groups of
samples, Pij = xi yj , i,j=0,1,...,N-1, and each Pij represents the
energy strength in the corresponding area in the time-frequency
plane. The area corresponding to each Pij is called a “microcell”.
P={Pij} is the microcell energy pattern for a given signal. Totally
we have N2 microcells and each resolution cell is composed of N
microcells. Therefore, our task here is to regroup the microcells
such that the tiling pattern has the maximum energy concentration.

B. Search for the Most Energetic Resolution Cell

The most energetic resolution cell in P is the rectangular region
which is composed of N microcells and has the maximum energy
strength. Our objective is to search P={Pij}, the pattern of N2

energy microcells in the T-F plane, to find the feasible pattern of N
resolution cells Zi, , such that the signal energy is0 > i > N − 1
optimally concentrated in as few cells as possible. We can perform
an exhaustive search of P using rectangular windows of size N to
find the most energetic resolution cell, and then the second most
energetic resolution cell, and so on. With some assumptions, we
can improve the search efficiency as follows. Assume that the most
energetic microcell P*

ij is included in the most energetic resolution
cell Z*

i. We search the neighborhood of P*
ij to find the rectangular

cluster of microcells with the most energy. That cluster defines the
most energetic resolution cell Z*

i. Therefore, starting from the most
energetic microcell, we regroup the microcells to find the most
energetic resolution cell. The procedure is as follews:

1) Rank order Pij , and put the rank ordered index (i,j) in idx(.).
idx(1) is the index of the most energetic microcell.
2) Calculate the rectangular area A1 specified by idx(1) and idx(2).

A1 = (i1-i2+1) (j1-j2+1). If A1  N, then both microcells are included>

within or on the border of a resolution cell. If A1 > N , these two
microcells can not be included in the same resolution cell.
3) Test the third ranked microcell. If it is inside A1 , fine. If it is
outside A1 , calculate A2 which includs A1 and idx(3). Test A2 .
4) Repeat test until Alast=N. The location of Alast is the most
energetic resolution cell Z*

i.

Repeat this search for next most energetic resolution cell and a
complete optimal T-F tiling pattern can be obtained. This
procedure is tedious and not practical for large transforms. In next
section, we will describe a more efficient way, an adaptive
approach.

IV. Adaptive Approach

The objective of the proposed method is to expand our signal in
terms of a BTP basis functions in a sequential fashion, i.e., find
one resolution cell from a succession of N T-F tiling patterns rather
than N cells from one T-F pattern. Fig.4 suggests the following
adaptive scheme:

1) Start at the stage q=1. We construct P1 from f(n) and use the
microcell and search algorithm described in Section III to find the
most energetic resolution cell Z1 with its associated basis function

and block transform packets T1. The projection of  f(n) onto )1(n)
gives the coefficient  and our first approximation)1(n) �1

(4)f̂1(n) = �1)1(n)

2) Take the residual   as the input to the next stage wheref̃1(n)

 (5)f̃1(n) = f(n) − f̂1(n) = f(n) − �1)1(n)

3) Repeat (1) and (2) for q>1 where the residual signal   at ithf̃ i(n)
stage is

(6)f̃ i(n) = f̃ i−1(n) − f̂ i(n) = f̃ i−1(n) − � i) i (n)

and is the most energetic basis function corresponding to) i (n)
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tiling pattern Pi  and BTP Ti.

In general, the basis functions   are not othonormal to each) i (n)
other. However, in each stage the BTP is an unitary transform and
therefore,   and   Thus the f(n)  >  f̃1(n)   f̃ i−1(n)  >  f̃ i (n) .
norm of the residual   monotonically decreases and convergesf̃ i(n)
to zero.

Because this representation is adaptive, it will be generally
concentrated in a very small subspace. As a result, we can use a
finite summation to approximate the signal with a residual error as
small as one wishes. The approximated signal can be expressed as

(7)

L

f̂(n) = � � i) i (n)
i = 1

The error energy for that frame using L coefficients is

(8)

N − 1
L = � [ f̃L(n) [2

n = 0

For long-length signal, this scheme can be adapted from frame to
frame.

V. Examples

Three examples are given to show the energy concentration
property of the adaptive BTP. The BTP is constructed from a DCT
base with block size 32. In each example the signal length is 1024.
The data sequence is partitioned into 32 frames consisting of 32
samples per frame. For each frame, we compute the residual  f̃ i(n)
and the corresponding error energy  ,  The average of i 1 > i > 4 .
these   over 32 frames is plotted in Fig.5. i ’s

Fig.5(a) shows the energy concentration property in terms of
number of coefficients for a narrow band gaussian signal S1 with
bandwidth = 0.2rad and central frequency  Due to the( 5�

6 ).
frequency localized nature of the signal, BTP does not have much
improvement over DCT.

The signal used in Fig.5(b) is a narrowband gaussian signal S1 plus
time-localized white gaussian noise with 10% duty cycle S2 .
Basically, it is a combination of frequency-localized and
time-localized signals and therefore, it can not be resolved in time
or frequency domain. Fig.5(b) shows the result for power
ratio(S1/S2) = -2dB and Fig.5(c) is the case for -8dB. Both figures
demonstrate that BTP is a more efficient compression engine over
DCT.

VI. Conclusions

We have described an adaptive procedure for signal decomposition
in the T-F plane. Taking one frame of signal, we use the microcell
approach to search the location and shape of the most energetic
rectangular resolution cell and generate the corresponding basis
function. After that, we take the residual signal as the next stage
input signal and repeat this procedure until the residual error
converges to as small as one wish. Three examples show the

adaptive compression efficiency over DCT. Other applications
such as excision of interference signal in spread spectrum
communication system and adaptive tracking of most energetic
resolution cell from frame to frame are under study.
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Fig.1. Tiling pattern for resolution cells in (a) frequency localized
BT (b) time localized BT (c) discrete WT (d) WP (e) BTP.
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Fig.3. Energy distributions of TLBT basis sequences in both time
and frequency  domain. (a) desired tiling pattern. (b)   for)0(n)
Cell 1 in Fig.3(a). (c)    for Cell 3 in Fig.3(a).)2(n)
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Fig.4. Adaptive Decomposition of signal f(n).
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Fig.5. Compression efficiency comparisons for (a) narrowband
gaussian signal S1 (b) S1 plus time localized gaussian signal S2 with
power ratio S1/S2=-2dB (c) S1+S2 for -8dB.
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