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ABSTRACT
This paper presents a stochastic analysis of the Filtered-X LMS
algorithm. The mean weight vector recursion is derived for slow
adaptation and for a white reference signal without use of
independence theory. The Wiener solution is determined
explicitly as a function of the input statistics and the impulse
responses of the primary and secondary signal paths. It is shown
that the steady-state mean weights for the Filtered-X LMS
algorithm converge to the Wiener solution only if the estimate of
the secondary path is without error. Monte Carlo simulations
show excellent agreement with the behavior predicted by the
theoretical model.

1. INTRODUCTION

Acoustic noise control has become ever more important in
recent years. National and multinational programs and policies
are being established to reduce and control environmental noise.
Some of the most important breakthroughs in control of sound
and vibration have been achieved through the use of
feedforward active noise control techniques. Active control
system performance is largely determined by the physical
implementation and by the proper choice and design of the
adaptive algorithm.

The most popular adaptive algorithm for active noise and
vibration control is the Filtered-X LMS Algorithm [1,2]. This
algorithm is a modification of the well known LMS algorithm.
Here, the reference signal is filtered to compensate for a
filtering operation which is inherent in the acoustic adaptation
loop (i.e. speakers, microphones and other acoustic transducers).
The introduction of these two filters in the system significantly
complicates the analysis of the adaptive algorithm behavior.
Analysis results, derived for the conventional LMS algorithm,
do not apply to the filtered case. Also, simplifying assumptions
for LMS algorithm analysis cannot be easily extended to the
Filtered-X LMS algorithm. This comment applies to the so-
called independence theory (i.e. successive data vectors are
assumed statistically independent). Data vector correlations are
created by the loop filtering operations. These correlations
render the independence theory model inadequate for the
statistical analysis of the algorithm. This is a substantial
theoretical drawback. Exact analysis of the algorithm is very
cumbersome without the independence assumption even for the
conventional LMS algorithm [3]. Most of the stochastic analyses
of the Filtered-X LMS algorithm in the literature concentrate on

algorithm stability [1,2,4,5], which is important for the proper
algorithm design. However, more complete analytical models
are necessary for predicting the algorithm’s transient and
steady-state behavior under different implementation conditions.

Recently, some results have been presented on the stochastic
analysis of the Filtered-X algorithm. A recursion has been
derived in [4] for the mean weight behavior. The analysis uses
the independence theory and assumes extremely slow
convergence. A more extensive analysis is presented in [6].
However, this analysis is also based on the independence
assumption. Detailed results are derived for the Delayed LMS
algorithm, a special case of Filtered-X LMS. Determining the
model parameters requires the experimental measurement of the
stability bounds of the algorithm.

This paper presents a stochastic analysis of the Filtered-X LMS
algorithm.  A vector recursion is obtained for the mean weight
for slow adaptation and a white reference without using the
independence assumption.   The Wiener solution is determined
explicitly as a function of the input statistics and the response of
the primary and secondary signal paths. It is shown that the
steady-state mean weights for Filtered-X LMS converge to the
Wiener solution if the estimate of the secondary path is without
error.  Monte Carlo simulations show excellent agreement with
the theoretical predictions.

2. ANALYSIS

2.1 The Analysis Model

Figure 1 shows a block diagram of an active noise control
problem which uses the Filtered-X LMS algorithm. The notation
is:
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Figure 1. Block diagram - active noise control system.

For the analysis, xn  is  assumed white with variance σ x
2 . Also,

the dimensions of W o and Wn  are assumed the same for

notational simplicity. If one vector has more components than
the other, the additional components can be assumed to be zero.

2.2 Weight Vector Update Equation

The signals in Fig. 1 can be described by the expressions
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Substituting (2)-(4) in (1) yields
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The weight update equation for the Filtered-X LMS algorithm is
given by

W W Xn n n fe
n+ = +1 µ (8)
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2.3 Mean Weight Vector Behavior

Taking the expected value of (9) yields
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The expectations in the summations on the right side of (10) are
now evaluated. Using the notation

[ ]R Ej i n j n i
T

− − −= X X (11)

for the correlation matrix of the reference vectors, the ( )k," th

entry of Rj i−  is given by
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The expectations in the first summation are then equal to Rj ,

j M= −0 1, , �� .

For small µ , the correlations between Wn i−  and either X n j−

or X n i−  can be disregarded in determining the expectations in

the second summation. However, the correlations between the
input vector pairs must be calculated because of S . With the
above approximation, the expectations in the second summation
become
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The expectations in the third term are equal to zero because
zn is zero mean and uncorrelated with xn . Thus, (10) can be

written as
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It is clear from (14) that the weight vector converges to
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Compare (14) with (3) in [4]. The latter assumes that [ ]E n iW −

is constant for all i M= −0 1, ,� . This assumption corresponds
to extremely slow adaptation which is not used here. Equation
(14) can be used to study the algorithm behavior for different

estimates �S  of the secondary path response S .

3. WIENER SOLUTION

A sufficient order conventional LMS algorithm, applied to
system identification,  corresponds to an unconstrained
optimization problem. The optimum solution is obtained by
matching the impulse response of the adaptive filter and the
unknown system. The adaptive filter response is convolved with
the impulse response of the secondary path filter S for the
Filtered-X LMS algorithm. Thus, a linear combination of the
adaptive weights should be equal to each sample of the
unknown system response. This is a constrained optimization
problem, frequently denoted constrained adaptive filtering.
Therefore, it is important to determine 1) the optimum weight
vector, 2) the  secondary path filter impulse response and 3)  the

Wiener solution and its relationship to the W o  of the physical
path.

For the Wiener solution for the Filtered-X LMS algorithm,
consider Fig. 2.
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Figure 2. Block diagram of the constrained adaptive
filter used to determine the Wiener solution

The mean-square error for a constant weight vector can be
obtained from (1) and (4) as
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where [ ]P Xj i n j n iE d− − −=  is the cross-correlation vector

between the primary and reference signals. It is easy to show

from (16) that the Wiener solution (minimum [ ]E en
2 ) is given

by
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Equation (18) is the Wiener solution, expressed as a function of
the input statistics and the acoustic path response for the system
in Fig. 1. As expected, note that the optimum solution is not

W o . More importantly, the Wiener solution (the minimum that
can be achieved by the algorithm) may be quite different than
the weight vector with the first N samples of W S*
(convolution of W  and S ) matching the corresponding entries

of W o . Comparison of  (18) and (15) shows that �S S=  leads to

[ ]E wW W∞ = . Moreover, (18) can be used to determine the

weight vector misadjustment for imperfect estimation of S .

Substituting Ww for W  in (16) yields the minimum mean-

square error for the Filtered-X LMS algorithm:
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4. SIMULATIONS

This section presents some simulation examples which
demonstrate the accuracy of the analytical model (14). Two
plots are shown for each example: The weight convergence
behavior (how well the model (14) predicts the weight
behavior), and the identification error

εn n= −W W So * (20)

which measures the identification accuracy achievable with the

Filtered-X LMS algorithm. In all the examples, σ x
2 1=  and

σ z
2 0 01= . . Figures 3-6 show the simulation results and the

theoretical predictions obtained using (14). The ragged curves
correspond to averages of 20 runs.

4.1 Example 1

Perfect estimation of the secondary path response (S= �S ) :

W o =[1.5, 1.0, -0.7], S= �S =[0.2, 0.8], µ=0.002



Figure 3. Evolution of εn  for Example 1

Figure 4. Evolution of Wn  for Example 1

Figures 3 and 4 show excellent agreement between theory and
simulation. The weights converge to the Wiener solution (18).
Figure 3 clearly shows the distance between the optimum

solution and the matching between W S*  and W o .

4.2 Example 2

Different filters in S  and �S  (imperfect estimation)

[ ]Wo = −15 10 0 7. , . , .
T , [ ]S= 0 2 08. , .

T , [ ]� . , .S= 0 4 09
T ,

µ = 0 005.

The results shown in Figures 5 and 6 show excellent agreement
between theory and simulation for the imperfect estimation case.
The Wiener solution has not been achieved because of the
inaccurate estimate of S .

Figure 5. Evolution of εn  for Example 2

Figure 6. Evolution of Wn  for Example 2

5. CONCLUSIONS

Accurate results for the stochastic analysis of the Filtered-X
LMS algorithm cannot rely on the independence assumption. An
exact analysis requires consideration of all existing signal
correlations. This represents an enormous mathematical  task.
The question is then what simplifications can be made which
lead to a tractable mathematical problem and to accurate
models.  When determining the weight vector behavior for slow
learning, a number of authors have demonstrated the following:
the correlation over time between reference signal vectors is
much more important than the correlation between the weight
vector and the reference signal vector. This behavior is due to
the tapped delay line structure of the algorithm which is often
ignored (with success) in much of the analysis. Here, this time-
correlation approach leads to an accurate model of the
Filtered-X LMS statistical algorithm behavior, which is not the
case using the independence assumption.
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