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ABSTRACT

Certain types of recursive filters have been considered as non-
realizable because they contain delayless recursive loops. Usually
the problem is rather technical than theoretical. In this paper a
method of implementing such filters is introduced. The general
procedure is to split a delay free recursive filter to a non-delay free
and a pure delay free structure. As a combination of these, the
filter can be implemented directly and efficiently. In addition, fol-
lowing from the same formulation, a generic procedure to convert
any such filter to an equivalent directly realizable structure is also
given. As an example, a set of frequency warped all-pole filters
is considered. The new warped all-pole lattice introduced in this
paper completes the family of warped filters.

1. INTRODUCTION

The transfer function of a conventional FIR filter is given by
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�iz
�i: (1)

Its inverse filter, i.e., a recursive IIR filter has the form
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The implementation of the filters is straightforward and determined
by the two block diagrams represented in Fig. 1, whereA = z�1.

It is also possible to design transversal filters whereA 6= z�1.
Several such filter structures have been presented in the past, e.g,
in [6], [8]. In theory, any such transversal filter given by

H(z) = 1�

NX

i=1

�iA(z)
�i: (3)

has an inverse filter

G(z) =
1

H(z)
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P

i
�iA(z)�i

: (4)

The filter is always stable if the poles are inside a unit circle. How-
ever, problems may arise in trying to implement it ifA(z) contains
delay free orlag freepaths. A classical example is awarped filter
[10][3], where

A(z) =
z�1 � �

1� �z�1
: (5)

y(n)x(n)

A

A

A A
1

2

N-2

b(n)a(n)

α

1

2

N-2

N-1
N-1

α

a)

o(n)o(n)

A

A
b)

α

α

α

α

α

α

Figure 1: a.) A transversal FIR-type filterH(z). b.) Its inverse
filter G(z)

A direct implementation of (5) takes the following form

y(n) = x(n� 1) + �(y(n� 1)� x(n)) (6)

Applying this to Fig. 1b results in a structure with delayless
paths, i.e., the signalo(n) is needed to calculatey(n), but o(n)
depends on the value ofy(n). By manipulating the difference
equation of the filter it is possible to derive a new modified filter
structure with a new set of coefficients (for a review, see [4]).

In this paper, a more general method of implementing certain
filter structures with delay free loops without any modifications
to the structure of the filter or its coefficients is introduced. In
addition, a generic procedure to convert such a filter to a modified
and directly realizable structure is also formulated.

Cancellation of delay free loops in digital filters have been
studied extensively in the past, e.g., in [11], and especially in the
case of digital filters derived from analog filters, e.g., recently in
[9]. Those methods usually produce a new equivalent structure
that can be implemented directly.

2. A GENERAL SOLUTION

A generalized version of a recursive filter discussed in this paper
is shown in Fig. 2a. The method introduced in this paper separates
the computation of the output of the filtery(n) and updating of the
inner states of the filter. During the computation ofy(n) the inner
states are not updated.

2.0.1. Computation ofy(n)

If P contains delay free paths the problem is thato(n) is a function
of y(n) andvice versa. A solution is to divide the computation of
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Figure 2: a.) A recursive delay free filter b.) equivalent circuit
where�! 0

y(n) to two distinct steps. First, we may calculate an output ofP
so thatP is temporarily disconnected fromy(n). In Fig. 2b this
is denotedo0(n). A practical way to do that is to feed 0.0 intoP
and read its output. After thaty0(n) = x(n) + o0(n) is fed to a
pure delay free structure(the upper loop in Fig. 2b). Pure delay
free structure may be obtained from the original filter structure
by disconnecting all its inner unit delay elements. Usually this
reduces to a single coefficient�.

The output of the disconnected parto0(n) depends only on the
previous samples while the output of the pure delay free structure
is a function ofx(n) ando0(n).

To derive a formula fory(n) it is convenient to study first an
approximation of the filter structure where there is a fractional
delay element in the loop, i.e., in Fig. 2b," = 1=M , where
M is a large positive integer. Equivalently one might say that
the sampling rate in theapproximately delay freeloop is Mfs,
higher than that of the original structure. At time instantn the sum
y0(n) = x(n) + o0(n) is formed and fed to the delay free loop.
At time instantn+ " the output value is

y(n+ ") = y0(n) + �y0(n): (7)

After M � 1 small time steps the output is

y(n+ (M � 1)") = y0(n) + y0(n)

M�1X

i=1

�i: (8)

Now we immediately see that if" ! 0, orM ! 1 the final
outputy(n) is a sum of a power series given by

y(n) = y0(n)

1X

i=0

�i =
y0(n)

1� �
=

x(n) + o0(n)

1� �
: (9)

2.0.2. Update the inner states

Once the current value ofy(n) is found the inner states ofP
must be updated. Usually intermediate results from computation
of o0(n) and� can be used efficiently at this phase.

We may now introduce the following algorithm as an imple-
mentation of any recursive filter:

Algorithm 1

1. At a given time step, computeo0(n) using the disconnected
structure shown in Fig. 2b.

2. The value of� may be computed in advance or obtained
as an output forP , where the inner states are set to zeros,
using 1.0 as an output. It is trivial to show thatj�j < 1 and
the sum in (9) converge if the filter is stable, i.e., the poles
are within the unit circle.
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Figure 3: a.) A warped IIR structure b.) A modified and directly
realizable warped IIR structure [2]

3. The final outputy(n) of the delay free recursive filter is
now given by

y(n) =
x(n) + o0(n)

1� �
: (10)

4. Update the inner states ofP usingy(n).

5. n ! n+ 1 and go to step 1.

3. APPLICATIONS

3.1. Warped all-pole filters

The block diagram of a warped all-pole filter is shown in Fig. 3a.
The outputs of the unit delay elements are denoted byri. Fig. 3b
shows the modified structure first proposed in [5] and later, inde-
pendently, in [4].

The�i-coefficients and1=g of the modified structure or the
outputo0(n) may be calculated using the following algorithm [4]:

Algorithm 2

1. �N+1 = ��N ; SN = �N ; o0(n) = �N+1rN+1

2. for i = N;N � 1; � � � ; 2,

Si�1 = �i�1 � �Si;

�i = �Si�1 + Si; o0(n) = o0(n) + �iri;

end

3. �1 = S1; 1=g = �0 = 1� �S1; o0(n) = o0(n) + �1r1;

The direct computation of the value ofo0(n) using step 1 in
algorithm 1 takes the form:

o0(n) = �1(r1 + �r2) + �2(r2 + �r3 � �(r1 + �r2)) (11)

+�3(r3 + �r4 � �(r2 + �r3 � �(r1 + �r2))) + � � �

Notice that if the equation is collected in the form:o0(n) =
�1r1 + �2r2 + �3r3 + � � � the result is exactly the same mod-
ified IIR structure as above and the coefficients are the same as
those given by the algorithm 2.

Equation (11) may also be computed recursively by the fol-
lowing algorithm:



Algorithm 3

1. S1 = r1 + �r2; o0(n) = �1S1;

2. for i = 2; 3; 4; � � �

Si = ri + �(ri+1 � Si�1);

o0(n) = o0(n) + �iSi;

end

If coefficients�i of the system and parameters� do not change
often it is convenient to calculate the value of� in advance. In this
structure it takes the following form:

� =

NX

i=1

�i(��)
i: (12)

Obviously, the term1=(1� �) takes exactly the same form as the
1=g term used in the modified structure.

If the coefficients are not updated at each sample the most effi-
cient implementation is the use of the modified and directly realiz-
able structure (Fig. 3b), where all the coefficients are calculated in
advance. Numerical simulations (using MATLAB) by the author
showed that in using the algorithm 1, the number of floating point
operations per one filter stage per sample were 11 FLOPS1. In the
modified filter (Fig. 3b), where all the coefficients were computed
in advance it was 6.5 FLOPS. However, if the coefficients are up-
dated at each sample the amount of FLOPS in the modified filter
was 13.2, while in the algorithm 1 it was 13 FLOPS. This suggests
that in this case, the use of the algorithm 1 is justified only if the
coefficients of the filter change continuously.

3.2. Warped all-pole lattice

A warped IIR lattice may be represented in the same form as a gen-
eral recursive filter of Fig. 2a by using a structure calledwarped
lattice predictor, where the unit delay elements of the conventional
structure are replaced by first order allpass elements given by (5).
The author is not aware of any implementation of a warped IIR
lattice prior to the following formulation.

The block diagram of a warped recursive lattice is shown in
Fig. 4a. Theki coefficients are reflection coefficients that can be
derived from�i coefficients of the corresponding transversal filter
using a simple recursion (see e.g., [7].)

Denoting� = 1� �2, the first step in algorithm 1 is now

o0(n) = k1(�r1) + k2(�r2 � �(�r1)) (13)

+k3(�r3 � �(�r2 � �(�r1) + k2k1(�r1)))

+k4(�r4 � �(�r3 � �(�r2 � �(�r1) + k2k1(�r1))

+k3k1(�r1)) + k3k2(�r2 � �(�r1))) � � �

From (13), an efficient implementation is given by the following
algorithm:

Algorithm 4

1. Si = 0 8i andki; pi = 0 8i � 0

2. for i = 1; 2; 3; � � � ;M

Si = �r3 � �(Si�1 + ki�1pi�2);

o0(n) = o0(n) + kiSi; pi = o0(n);

end
1
� was calculated in advance
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Figure 4: a.) A warped all-pole lattice structure as a combination
of a lattice predictor and a recursive feedback loop b.) A modified
lattice structure

As above, a directly realizable structure (Fig. 4b) is available.
If (13) is reorganized in terms of the signalsri as was done in de-
riving the modified structure of Fig. 3b, the resulting equation for
o0(n) becomes very complicated because the lattice structure con-
tains significantly more delay free paths. However, we may use
lattice-type computation for the coefficientsci of the new struc-
ture. The algorithm may be understood so that the input to the
lattice structure is first disconnected fromy(n). Next, set for each
ci, ri = 1 and all the other signalsrj 6=i = 0. After that,0:0 is fed
into the lattice structure and as a resultci = o0(n).

As an algorithm, this may be reduced to

Algorithm 5

1. for j = 1; 2; 3; � � � ;M

2. f = 0; b = 0; cj = 0; s = �rk;

3. for i = j; j + 1; � � � ;M

cj = cj + kis;

b = s+ kif

f = f + kis;

s = ��b;

end

4. end

The� coefficient may be calculated using a similar approach.
Descriptively, according to the step 2 in algorithm 1, the inner
states are set to zeros and 1.0 is fed intoP . As a result,� = o0(n).
An efficient computation of� takes the following steps:

Algorithm 6

1. b = 1:0; f = 1:0; � = 0; s = ��;



2. for i = 1; 2; 3; � � � ;M

� = �+ kis;

b = s+ kif

f = f + kis;

s = ��b;

end

Numerical simulations show that an optimized implementa-
tion of the system using algorithm 1, so that� is computed off-
line, requires approximately 13 floating point operations per sam-
ple per filter stage. In the modified lattice structure, where the
coefficientsci and� are computed beforehand, the computational
load is 12 FLOPS. If the coefficients are updated continuously, the
corresponding numbers of FLOPS for algorithm 1 and the modi-
fied lattice structure of Fig. 4b are 23 and 82.3–130 FLOPS2 ,
respectively. Therefore, the modified structure of Fig. 4b is more
efficient than the algorithm 1 only if the coefficients are held con-
stant over several hundred sample periods.

4. MODIFIED AND DIRECTLY REALIZABLE
STRUCTURES

From the two examples above, we may now formulate a generic
procedure to design a modified and directly realizable structure
and its coefficients from any filter having the structure of Fig. 2a
and containing delay free loops. As a difference equation the mod-
ified structure takes the following form:

y(n) =
1

1� �
(x(n) +

MX

i=1

ciri); (14)

where� is the output of systemP so that all the inner states of
systemP are set to zero and 1.0 is fed into the filter.

The signalsri are selected so that they are outputs of unit delay
elements of the structure and do not depend on the passing value
of y(n). Coefficientci is calculated by first settingri = 1 and all
the other signalsrj 6=i = 0. After that coefficientci is given as an
output ofP for a zero input. This is repeated for every coefficient
ci.

5. CONCLUSIONS AND FUTURE WORK

A method of implementing any recursive filter having a delayless
feedback loop was introduced in this paper. It was also shown that
the same formulation of the problem may be used to characterize a
technique of converting any recursive filter to a new modified filter
that can be implemented directly.

In this paper, the technique was applied to the implementation
of frequency warped all-pole filters, i.e., filters where the unit de-
lays of a conventional structure are replaced with first order allpass
elements. In the case of a direct form 1 filter an alternative method
of implementing the filter was found. The warped all-pole lattice
and the corresponding modified filter are new usable alternatives
for applications where warped all-pole filters are used.

The author has been working with new techniques of audio
coding based onwarped linear prediction[10][1] and complex

2In the modified structure the computational load is a function filter
dimension. The numbers correspond to 10- to 20-tap lattice filters

valued warped linear prediction [2]. The warped all-pole lattice
introduced in this paper is going to have a central role in develop-
ing and optimizing the coding scheme because with the new lattice
structure it is now possible to apply several efficient techniques de-
veloped for conventional linear predictive coding, e.g., backward
adaptive lattice, to warped linear predictive coding.
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