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ABSTRACT

This paper is concerned with the problem of blind separa-
tion of independent signals (sources) from their linear con-
volutive mixtures. The various signals are assumed to be
linear non-Gaussian but not necessarily i.i.d. Recently an
iterative, normalized higher-order cumulant maximization
based approach was developed using the fourth-order nor-
malized cumulants of the “beamformed” data. A byprod-
uct of this approach is a decomposition of the given data at
each sensor into its independent signal components. In this
paper an adaptive implementation of the above approach
is developed using a stochastic gradient approach. Some
further enhancements including a Wiener filter implemen-
tation for signal separation and adaptive filter reinitializa-
tion are also provided. A computer simulation example is
presented.

1. INTRODUCTION

Given noisy measurements y;(k), (¢ = 1,2,---,N), at
time k at N sensors, let these measurements be a lin-
ear convolutive mixture of M source signals z;(k), (j =

1,2,---, M):
yi(k) = ZUij(Z)I:j(k) + ni(k), i=1,2,---, N,

1-1
= y(k) = U(z)x(k) + n(k), El - 2;
where ij—th element of U(z) is Us(z), y(k) =

[y1(k) y2(k) . EyN(k)]T, similarly for x(k) and n(k),
27! is both the backward-shift operator (i.e., z7'z(k) =
z(k — 1), etc.) as well as the complex variable in the
Z—transform, z;(k) is the j-th input at sampling time k,
yi(k) is the i-th output, n;(k) is the additive Gaussian mea-
surement noise, and Uj;(z) := Ezo ’LLij(l)Z_l is the scalar
transfer function with «;(k) as the input and y;(k) as the
output. We allow all of the above variables to be complex-
valued.

Suppose that we design a MIMO dynamic system &£(z)
with N inputs and M outputs such that the overall M x M

system
T(z) = E(2)U(z2) (1-3)

decouples the source signals. Following the 2 x 2 case con-
sidered in [4], this implies that we must have (T3;(z) denotes
the ij—th element of 7(z))

Ti:(z =0 for <#1i;

(%) £0 for i—ij (1-4)
where ¢+ = 1,2,---,M; 5 = 1,2,---,M and 3; €
{1,2,---, M} such that z; # 7; for j # . That is, in every
column and every row of 7(z) there is exactly one non-zero
entry. In a blind separation problem, the nonzero entries
of 7(z) are allowed to be a scalar linear system (shaping
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filter), unlike the equalization problems where they must
be constant gains and/or pure delays.

The problem considered above arises in a wide variety of
applications: array processing, speech enhancement (“cock-
tail party” problem), and noise cancellation, see [1]-[12] and
references therein. The prior work done can be classified
into two broad categories based upon the underlying propa-
gation model: instantaneous mixtures and convolutive mix-
tures. The general model (1-2) represents a linear convolu-
tive mixture. The work reported in [4], [7] and [11] (and ref-
erences therein) deals with linear convolutive mixture (dy-
namic mixing) models. Past work on separation of convolu-
tive mixtures may be categorized into several classes: time-
domain approaches ([7], [8], [9], [10]), frequency-domain ap-
proaches ([4],[11]), adaptive (recursive) approaches ([7], [9],
[10]) and non-recursive (batch) approaches ([4], [8], [11]).
In this paper we present time-domain adaptive approaches.
Quite a few of existing approaches are limited either to
M =N =2 ([4], [9]) or to M = N ([7]). Although [11]
treats a general case, their analysis is restricted to the case
of two sources (M = 2). In this paper we consider a general
case of N > M with M arbitrary.

2. MODEL ASSUMPTIONS
We impose the following conditions on model (1-1)-(1-2):

(AS1) N > M (at least as many outputs as inputs).

(AS2) The vector sequence {x(k)} is stationary, its var-
ious components are mutually independent, and
U(z) is stable. Moreover, {x(k)} is linear, i.e.

x(k) = V(z)w(k), (2-1)

where {w(k)} is a zero-mean, M —vector station-
ary non-Gaussian process, temporally i.i.d. and
spatially independent, with nonzero fourth cumu-
lants. Because of the mutual independence of the
components of x(k), we take V(z) to be diagonal.

(AS3) Consider the composite system
y(k) = F(z)w(k)+n(k), with F(z):=U(2)V(=2).
2—-2
Assume that rank{F(2)} = M for any |z| = 1.

(AS4) Since the composite system is causal, we have

oo L
F(z) =Y Fz™l & ) Fzl. (2-3)
=0 =0

(AS5) The noise {n(k)} is a zero-mean, stationary Gaus-
sian sequence independent of {w(k)}.

Let f(l)(z) denote the i—th column of F(z). In blind
convolutive signal separation we are interested in decom-
posing the observations at the various sensors into its inde-
pendent components. That is, our objective is to estimate
f(l)(z)wi(k) fori=1,2,---, M given {y(k)} without hav-
ing a prior knowledge of F(z). Denote the ij—th element
of F(z) as Fi;(=2).



3. A BATCH SOLUTION (8]

In this section we briefly discuss the batch (non-recursive)
approach of [8]; its adaptive version is developed in Sec.
4. Let CUM,4(w) denote the fourth-order cumulant of a
complex-valued scalar zero-mean random variable w, de-

fined as
CUMs(w) = E{|w|*} — 2[E{|w|*}]* — |B{w®}*. (3-1)

Consider an 1 x N row-vector polynomial equalizer (filter)
CT(z), with its j-th entry denoted by C;(z), operating on
the data vector y(k). Let the equalizer output be denoted
by e(k):

e(k) = ZCi(Z)yi(k)- (3-2)

Following [6] consider maximization of the cost

;. ICUMA(e(h)]

[E{le(R)I?}]?

for designing a linear equalizer to recover one of the inputs.
It is shown [6] that when (3-3) is maximized w.r.t. C(z),
then (3-2) reduces to

e(k) = dwjs(k — ko),

(3-3)

(3-4)

where d is some complex constant, ko is some integer, jo
indexes some input out of the given M inputs.
An source-iterative solution 1s given by [8]:

Step 1. Maximize (3-3) w.r.t. C(2) to obtain (3-4).
Step 2. Cross-correlate {e(k)} (of (3-4)) with the given

data (2-2) and define a possibly scaled and shifted
estimate of fi;,(7) as

E{yi(k)e*(k — 1)}
E{le(k)?}
where Fj;(z) = Ez_w fij(l)z_l. Consider now

the reconstructed contribution of e(k) to the data

yi(k) (i =1,2,---,N), denoted by i ;,(k):

Tido(k) = Y _ Fiso(D)e(k — 1),

ﬁju (T) =

(3-5)

(3-6)

Step 3. Remove the above contribution from the data to
define the outputs of a MIMO system with N out-
puts and M — 1 inputs. These are given by

yi(k) = wi(k) — ¥i50 (k). (3-1)

Step 4. If M > 1,set M «— M — 1, yi(k) « yi(k), and go
back to Step 1, else quit.

It has been shown in [6],[8] that

Gido(R) =D fiso(Dwio(k = 1), (3-8)

i.e., we have decomposed the observations at the various
sensors into its independent components: ¥; j,(k) in (3-8)
represents the contribution of {w;,(k)} to the :—th sensor
achieving blind signal separation. It has been shown in
[6] that under the conditions (AS1)-(AS4) and no noise,
the proposed iterative approach is capable of blind identifi-
cation of a MIMO transfer function F(z) up to a time-shift,
a scaling and a permutation matrix provided that we allow
doubly-infinite equalizers.

4. ADAPTIVE ALGORITHM

In this section we develop a stochastic gradient-based “re-
cursification” of all of the batch optimization steps dis-
cussed in Sec. 3. We will use the superscript (m) to denote
the various quantities pertaining to stage m of the batch al-
gorithm of Sec. 3 (i.e. m-th execution of Steps 1-4 therein).
Let the length of the equalizer C(z) be L. and let

Le—1

C(z) = > ez

=0

(4-1)

Initialization: Define

Yi(k) = [ wi(k) vik—Le+1) 17, (4-2)

YO(k) = [ vi7(k) Yk 7, (4—3)

y (k) = y(k).
DO FOR m =1,2,---, M:

(4-4)

C™(k) = C™(k —1) + m V. J(C (k- 1))
(4-5)
ct™(k) = C™(k)/|C (k)| (4-6)

where 0
Ve IO (k) = S%“(’Y&T))W

2k
o { ml? (k) — i) o)
— (m - wGP) ) Y, (4= )
mip) = (1— pa)miT) y + pale™E®)?,  (4-8)

miy) = (L= wa)miG ) + mee™ k), (4-9)

m{p) = (1—p)miT) ) + mle™®),  (4-10)
i) = mi —2m{? — | miPP (4—11)
and
™ (k) = ST (R)Y™) (k). (4 —12)
Set
(m) 2
y ok = ) FMke™(k-n)  (4-13)

n=—Ly

=(m) .
wherey (k) represents (cf. (3-6)) the contribution of the
extracted source at the m—th stage to the measurements
at time k, and where (n = —L1,—L; + 1, .-+, L)

F(k) = REV(k)/miT) (k), (4-14)

m{(k) = (1 — ps)m{(k—1) + palel™ (k)% (4 — 15)
RIM(E) = (1— pa)RYI(k —1) + psy ™ (k)el™* (k —n
(4—186

and

m m =(m)
Y ®) = vy ¥ (k).

Define

(4—17)

= #me) o dG- 1) )

(4 —18)



where ’g]gm)(k) denotes the i—th component of §(m)(k). Set

m m m T
v +1)(k) [ ( +1)T(k) Y]gj +1)T(k)]
(4—19)
where
Y (k) = v (k) - T (k). (4 20)
ENDDO

=(m) . .
The sequence {y (k)} in (4-13) represents the contri-
bution of the extracted source at the m—th stage to the

measurements at time k. Variable e(m)(k) in (4-12) cor-
responds to (3-2), J,(cm) in (4-5) corresponds to (3-3), and
VC*J(m) is the instantaneous gradient, all at time %k and

stage m. In (4-5) g1 is the update step-size and in (4-8)-
(4-10) and (4-15)-(4- 16) u2 and pus, respectively, are the
forgetting factors (> 0,

Running Cost. To momtor the convergence of the equal-
izers in various stages of the algorithm, it is useful to cal-

culate a running cost with the sign. Let j,(cm) denote the
running cost for the m—th stage at time k, given by

(m) _ |~(m)|2

My

Jm = — —2 (4—21)
My
where m(;;), 777,(27;) and mg:) are computed as in (4-8)-(4-

10) but with a smaller ps.

5. FURTHER MODIFICATIONS

5.1. MMSE Signal Separation
5.1.1. Non-recursive Processing
A by-product of the solutions of Secs. 3 and 4 is the

estimates of the system/channel impulse response. These
estimates can be used to design MMSE estimators of
Fh )(z)wl(k) with a controlled delay d to obtain an “op-
timum” performance (ignoring any effects of additive noise

on the channel estimates). Let F( %) denote the i—th column

of F;. We wish to design a hnear MMSE ﬁlter (equahzer)

of length L. +1 to estimate y9)(k — d) as y (k d) given
y(l)forl_kk—l ,k— L.+ 1 where d >0,

YAk) = FO(2ywih) = > FPwi(k—1), (5-1)

L.—1

57— a) = 3 Gay(k ). (5-2)

Using the orthogonality principle, the desired solution is
given by
[Go -+ Gpr,1]=o0%;[ Ha Huo 1, Ry
(5-3)
where Ryy denotes a [N L.] X [N L] correlation matrix with
R,y (j — %) as its i5-th block element,

L
Ryy(p) = B{y(t+p)y ()}, Haopi= Y FOEG

k=0
(5—-4)
In practice, we replace all the unknowns by their estimates.
Also we design the equalizer only up to a scale factor by
omitting oZ,; from (5-3).

Remark 1. Selection of Delay d: In designing (5-2) the
delay d was pre-determined. One may choose to select d
via exhaustive optimization as detailed below. The MMSE
when (5-2) is used can be expressed as

J(d) = uB {7k -y -a)} - T'(@) (5-5)

where

J'(d) := ob; tr HR;H™, (5 —6)
H:=[ Hs Ha, Haor. ]. (5-17)

Since the first term on the right-side of (5-5) is independent
of d, minimizing J(d) w.r.t. d is equivalent to maximizing

u/]j (d) o

5.1.2. Adaptz've Implementation

Note that R, ! does not depend upon the stage m of the
algorithm of Sec 4. Its computation can easily be recursi-
fied by using the matrix inversion lemma: see Table 13.1 on
p. 569 in [13]. Denote the data-based adaptive estimate of

R,y at time k as Pyy(k). Let Hgm)(k) denote the estimate

yy 3
of H; at stage m and time k of the multistage algorithm of

Sec. 4. Note that f&m)(k) in (4-14) (see also (3-5)) denotes

an estimate of F{/) for some i € {1,2,---, M} (up to a scale
factor and time shift). Therefore, from (5 2) and (5-5) we
obtain the adaptive 1mplementat10n at stage m; details are
omitted.

5.2. Adaptive Filter Reinitialization

In the source-iterative (multistage) approaches of Secs. 3
and 4, any errors in cancelling the extracted sources from
the preceding stages [ = 1,2, ---,m — 1 affect the perfor-
mance at stage m. The only stage that is immune to this
phenomenon is stage m = 1. A possible solution to alle-
viate this error propagation from stage-to-stage is to use
parallel stages where we still have M stages for M sources
but they all operate directly on the given data record in
parallel but with different initializations of the equalizers.
The problem here is how to ensure that each stage con-
verges to a distinct source. Here we propose to initialize
the parallel stages using the results of the serial multistage
implementation of Sec. 4 coupled with an MMSE solution
similar to that of Sec. 5.1. For stage m = 1, there are no
changes to the algorithm of Sec. 4. For stages m > 2, run
the algorithm of Sec. 4 till the running cost (4-21) : reaches
a steady-state. Given the estimates of the subchannel im-
pulse response at stage m, we can design an MMSE filter
(in a fashion similar to Sec. 5.1.2) to estimate w;(k — d)
given y(I)for l=k,k—1,---,k— Lo+ 1. Let the extracted
w;(k) at stage m be denoted by w™ (k). Mimicking Sec.
5.1.2, a recursive MMSE solution at stage m and time k is
given by

(k- d) = i G (k)y(k — 1) (5 - 8)
where
(&™) &™) - STL@) ]

= [ F&) F{M(k) 0 0 ] Puy(k).
(5-9)
At stage m and time k, @(™)(k — d) is an MMSE estimate
(with delay d) of e(m)(k) for the parallel implementation.
Note that C(z) = EL"_I G(m)(k)z is the desired MMSE

initializer.



6. SIMULATION EXAMPLE
Take N=3 and M=2 in (2-2) with

0.2+ 0.8271 4+ 0.42~2

f(l)(z) = | 03z7! —0.6272 ,
0.

0.5-0.3z71
F2l(z) = | —0.2127! — 0.52~2 + 0.722~% + 0.362~% + 0.21z°
0.

Fig. 1.

(Algorithm of Sec. 4, no reinitialization)
1.0 T T T T

SNR = 25.2dB -
———— SNR=182dB

———— SNR=12.2dB

———— SNR=5.2dB

02 -

ave. running cost

-1.0

1
0 5000 10000 15000
no. of samples

The input {wi(k)} is an ii.d. complex Gaussian-mixture
with 4th normalized cumulant as 0.7433 . The input
{w2(k)} is an iid. 4-QAM sequence with 4th normalized
cumulant as —1. The additive noise is white, complex Gaus-
sian. The powers of {w;(k)} were scaled so as to have
E{|FV(2)w(k)|*} = E{|F(z)wa(k)|}. The perfor-
mance measure was taken to be the signal-to-interference-
and-noise ratio (SINR) per source signal, defined as

E{Il'y'(")(k)(ll_j (6 1)
B{FO(k) -3y (k)IP}

where @ is that value of the scalar a which minimizes

E{|[79 (k) — an'(J)(k)HZ}. The length of the inverse fil-
ters was 11 samples per sensor (output) for the approach
of Sec. 4. The initial guess for the tap gains was: set
ci(5) = 1 for i = m for the m—th stage equalizer (m = 1, 2)
with the remaining tap gains set to zero. The algorithm
step sizes and forgetting factors for each stage m were cho-
sen as: g1 = 0.0005, gz = 0.015 and ps = 0.0005 when

(m

'74k) < 0 (see (4-11)), and p1 = 0.00025, gz = 0.0075 and

s = 0.0005 when 7&20 > 0. For the running cost (4-21)

computation we selected “p2”=0.002 in (4-8)-(4-10). The
parameters L; and Ly in (4-13) were selected as Ly = 1
and L, = 6. To design the MMSE equalizers/filters we took
L. = 11 and d was optimized following Remark 1 of Sec.
5.1.1 over the range [—15, 6].

Fig. 1 shows the evolution of the average running cost
J,(cm) (see (4-21)), averaged over 100 Monte Carlo runs (af-

ter ‘assigning’ each equalizer cost to its corresponding ex-
tracted source) without using any filter reinitialization. Fig.

SINR; =

2 shows J,(cm) when reinitialization (after 12000 samples)

of Sec. 5.2 is used. It turns out that source 1 (wi(k)) is
extracted first, so that reinitialization only affects source
2 (4-QAM). Table I shows the average SINR (based on
100 runs) for the two sources at the end of the run (ie.
at k = 18000) without and with filter reinitialization, for

various SNR’s. The SINR’s were computed using the so-
lution (4-13) as well as the MMSE solution of Sec. 5.1.2.
It is seen that blind signal separation benefits from both,
MMSE signal separation as well as filter reinitialization.

Fig. 2.

(Algorithm of Sec. 4 with reinitialization of Sec. 5.2)
1.0 T T T T T T

SNR = 25.2dB -
———— SNR=182dB

———— SNR=12.2dB

———— SNR=5.2dB

02 -

-0.2

ave. running cost

06 Tl 1

1
0 5000 10000 15000
no. of samples

-1.0
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TABLE I. Average SINR after blind separation. Se-
rial: Algorithm of Sec. 4; Parallel: Algorithm of Sec. 4 +
reinitialization of Sec. 5.2.

SOURCE 1 (Gausslan mixture)

SNR serial parallel
(4-13) | MMSE | (4-13) | MMSE
25.2 dB 8.653 10.667 8.653 10.667
18.2 dB 8.447 10.317 8.447 10.317

12.2 dB 7.807 9.253 7.807 9.253
5.2 dB 5.893 6.511 5.893 6.511

SOURCE 2 (4-QAM)
SNR serial parallel
(4-13) | MMSE | (4-13) | MMSE
25.2 dB 11.621 12.647 | 16.123 15.271
18.2 dB 11.198 12.134 | 15.078 14.351
12.2 dB 9.876 10.591 12.445 12.070
5.2 dB 6.505 6.862 7.746 7.626




