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ABSTRACT

This paper is concerned with the problem of blind separa-
tion of independent signals (sources) from their linear con-
volutive mixtures. The various signals are assumed to be
linear non-Gaussian but not necessarily i.i.d. Recently an
iterative, normalized higher-order cumulant maximization
based approach was developed using the fourth-order nor-
malized cumulants of the \beamformed" data. A byprod-
uct of this approach is a decomposition of the given data at
each sensor into its independent signal components. In this
paper an adaptive implementation of the above approach
is developed using a stochastic gradient approach. Some
further enhancements including a Wiener �lter implemen-
tation for signal separation and adaptive �lter reinitializa-
tion are also provided. A computer simulation example is
presented.

1. INTRODUCTION

Given noisy measurements yi(k), (i = 1; 2; � � � ;N), at
time k at N sensors, let these measurements be a lin-
ear convolutive mixture of M source signals xj(k), (j =
1; 2; � � � ;M):

yi(k) =

MX
j=1

Uij(z)xj(k) + ni(k) ; i = 1; 2; � � � ;N;

(1� 1)
=) y(k) = U(z)x(k) + n(k); (1 � 2)

where ij�th element of U(z) is Uij(z), y(k) =

[y1(k)
... y2(k)

... � � �
...yN (k)]

T , similarly for x(k) and n(k),
z�1 is both the backward-shift operator (i.e., z�1x(k) =
x(k � 1), etc.) as well as the complex variable in the
Z�transform, xj(k) is the j-th input at sampling time k,
yi(k) is the i-th output, ni(k) is the additive Gaussian mea-
surement noise, and Uij(z) :=

P
1

l=0 uij(l)z
�l is the scalar

transfer function with xj(k) as the input and yi(k) as the
output. We allow all of the above variables to be complex-
valued.
Suppose that we design a MIMO dynamic system E(z)

with N inputs and M outputs such that the overall M�M
system

T (z) := E(z)U(z) (1 � 3)

decouples the source signals. Following the 2 � 2 case con-
sidered in [4], this implies that we must have (Tij(z) denotes
the ij�th element of T (z))

Tij(z) = 0 for i 6= ij
6= 0 for i = ij

(1� 4)

where i = 1; 2; � � � ;M ; j = 1; 2; � � � ;M and ij 2
f1; 2; � � � ;Mg such that ij 6= il for j 6= l. That is, in every
column and every row of T (z) there is exactly one non-zero
entry. In a blind separation problem, the nonzero entries
of T (z) are allowed to be a scalar linear system (shaping
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�lter), unlike the equalization problems where they must
be constant gains and/or pure delays.
The problem considered above arises in a wide variety of

applications: array processing, speech enhancement (\cock-
tail party" problem), and noise cancellation, see [1]-[12] and
references therein. The prior work done can be classi�ed
into two broad categories based upon the underlying propa-
gation model: instantaneous mixtures and convolutive mix-
tures. The general model (1-2) represents a linear convolu-
tive mixture. The work reported in [4], [7] and [11] (and ref-
erences therein) deals with linear convolutive mixture (dy-
namic mixing) models. Past work on separation of convolu-
tive mixtures may be categorized into several classes: time-
domain approaches ([7], [8], [9], [10]), frequency-domain ap-
proaches ([4],[11]), adaptive (recursive) approaches ([7], [9],
[10]) and non-recursive (batch) approaches ([4], [8], [11]).
In this paper we present time-domain adaptive approaches.
Quite a few of existing approaches are limited either to
M = N = 2 ([4], [9]) or to M = N ([7]). Although [11]
treats a general case, their analysis is restricted to the case
of two sources (M = 2). In this paper we consider a general
case of N �M with M arbitrary.

2. MODEL ASSUMPTIONS

We impose the following conditions on model (1-1)-(1-2):

(AS1) N �M (at least as many outputs as inputs).

(AS2) The vector sequence fx(k)g is stationary, its var-
ious components are mutually independent, and
U(z) is stable. Moreover, fx(k)g is linear, i.e.

x(k) = V(z)w(k); (2� 1)

where fw(k)g is a zero-mean, M�vector station-
ary non-Gaussian process, temporally i.i.d. and
spatially independent, with nonzero fourth cumu-
lants. Because of the mutual independence of the
components of x(k), we take V(z) to be diagonal.

(AS3) Consider the composite system

y(k) = F(z)w(k)+n(k); with F(z) := U(z)V(z):
(2� 2)

Assume that rankfF(z)g =M for any jzj = 1.

(AS4) Since the composite system is causal, we have

F(z) =

1X
l=0

Flz
�l �

LX
l=0

Flz
�l: (2� 3)

(AS5) The noise fn(k)g is a zero-mean, stationary Gaus-
sian sequence independent of fw(k)g.

Let F (i)(z) denote the i�th column of F(z). In blind
convolutive signal separation we are interested in decom-
posing the observations at the various sensors into its inde-
pendent components. That is, our objective is to estimate
F (i)(z)wi(k) for i = 1; 2; � � � ;M given fy(k)g without hav-
ing a prior knowledge of F(z). Denote the ij�th element
of F(z) as Fij(z).



3. A BATCH SOLUTION [8]

In this section we briey discuss the batch (non-recursive)
approach of [8]; its adaptive version is developed in Sec.
4. Let CUM4(w) denote the fourth-order cumulant of a
complex-valued scalar zero-mean random variable w, de-
�ned as

CUM4(w) = Efjwj4g � 2[Efjwj2g]2 � jEfw2gj2: (3� 1)

Consider an 1 �N row-vector polynomial equalizer (�lter)
CT (z), with its j-th entry denoted by Cj(z), operating on
the data vector y(k). Let the equalizer output be denoted
by e(k):

e(k) =

NX
i=1

Ci(z)yi(k): (3� 2)

Following [6] consider maximization of the cost

J :=
jCUM4(e(k))j

[Efje(k)j2g]2
(3� 3)

for designing a linear equalizer to recover one of the inputs.
It is shown [6] that when (3-3) is maximized w.r.t. C(z),
then (3-2) reduces to

e(k) = dwj0(k� k0); (3� 4)

where d is some complex constant, k0 is some integer, j0
indexes some input out of the given M inputs.
An source-iterative solution is given by [8]:

Step 1. Maximize (3-3) w.r.t. C(z) to obtain (3-4).
Step 2. Cross-correlate fe(k)g (of (3-4)) with the given

data (2-2) and de�ne a possibly scaled and shifted
estimate of fij0(�) as

bfij0(�) :=
Efyi(k)e

�(k� �)g

Efje(k)j2g
(3� 5)

where Fij(z) =
P

1

l=�1
fij(l)z

�l. Consider now

the reconstructed contribution of e(k) to the data
yi(k) (i = 1; 2; � � � ;N), denoted by eyi;j0(k):

eyi;j0(k) :=X
l

bfij0(l)e(k � l): (3 � 6)

Step 3. Remove the above contribution from the data to
de�ne the outputs of a MIMO system with N out-
puts and M � 1 inputs. These are given by

y0i(k) := yi(k)� eyi;j0 (k): (3� 7)

Step 4. If M > 1, set M  M � 1, yi(k)  y0i(k), and go
back to Step 1, else quit.

It has been shown in [6],[8] that

eyi;j0 (k) =X
l

fij0(l)wj0(k � l); (3� 8)

i.e., we have decomposed the observations at the various
sensors into its independent components: eyi;j0 (k) in (3-8)
represents the contribution of fwj0(k)g to the i�th sensor
achieving blind signal separation. It has been shown in
[6] that under the conditions (AS1)-(AS4) and no noise,
the proposed iterative approach is capable of blind identi�-
cation of a MIMO transfer function F(z) up to a time-shift,
a scaling and a permutation matrix provided that we allow
doubly-in�nite equalizers.

4. ADAPTIVE ALGORITHM

In this section we develop a stochastic gradient-based \re-
cursi�cation" of all of the batch optimization steps dis-
cussed in Sec. 3. We will use the superscript (m) to denote
the various quantities pertaining to stage m of the batch al-
gorithm of Sec. 3 (i.e. m-th execution of Steps 1-4 therein).
Let the length of the equalizer C(z) be Le and let

Ci(z) =

Le�1X
l=0

ci(l)z
�l: (4� 1)

Initialization: De�ne

Yi(k) = [ yi(k) � � � yi(k � Le + 1) ]T ; (4� 2)

Y(1)(k) =
�
Y T
1 (k) � � � Y T

N (k)
�T

; (4� 3)

y(1)(k) = y(k): (4� 4)

DO FOR m = 1; 2; � � � ;M :eC(m)(k) = C(m)(k � 1) + �1 5C�
J
(m)
k (C(m)(k � 1))

(4� 5)

C(m)(k) = eC(m)(k)=keC(m)(k)k (4� 6)

where

5C�
J
(m)
k (C(m)(k)) = sgn((m)

4k )
2

m
(m)3
2k

�
nh

m
(m)
2k

�
e(m)2(k)� em(m)

2k

�
e(m)�(k)

�
�
m

(m)
4k � jem(m)

2k j
2
�
e(m)(k)

i
Y(m)�(k)

o
; (4� 7)

m
(m)
2k = (1� �2)m

(m)
2(k�1) + �2je

(m)(k)j2; (4� 8)

em(m)
2k = (1� �2)em(m)

2(k�1) + �2e
(m)2(k); (4� 9)

m
(m)
4k = (1� �2)m

(m)
4(k�1) + �2je

(m)(k)j4; (4� 10)


(m)
4k = m

(m)
4k � 2m(m)2

2k � jem(m)
2k j

2 (4� 11)

and
e(m)(k) = C(m)T (k)Y(m)(k): (4� 12)

Set

bey(m)
(k) =

L2X
n=�L1

eF(m)
n (k)e(m)(k� n) (4� 13)

where bey(m)
(k) represents (cf. (3-6)) the contribution of the

extracted source at the m�th stage to the measurements
at time k, and where (n = �L1;�L1 + 1; � � � ; L2)eF(m)

n (k) = R(m)
n (k)=m(m)

ee (k); (4� 14)

m(m)
ee (k) = (1��3)m

(m)
ee (k� 1) + �3je

(m)(k)j2; (4� 15)

R(m)
n (k) = (1� �3)R

(m)
n (k � 1) + �3y

(m)(k)e(m)�(k � n)
(4� 16)

and

y(m+1)(k) = y(m)(k) � bey(m)
(k): (4� 17)

De�neeY (m)
i (k) =

� ey(m)
i (k) � � � ey(m)

i (k � Le + 1)
�T
(4� 18)



where ey(m)
i (k) denotes the i�th component of ey(m)(k). Set

Y(m+1)(k) =
�
Y
(m+1)T
1 (k) � � � Y

(m+1)T
N (k)

�T
(4� 19)

where

Y
(m+1)
i (k) = Y

(m)
i (k) � eY (m)

i (k): (4� 20)

ENDDO

The sequence fbey(m)
(k)g in (4-13) represents the contri-

bution of the extracted source at the m�th stage to the
measurements at time k. Variable e(m)(k) in (4-12) cor-

responds to (3-2), J (m)
k in (4-5) corresponds to (3-3), and

5C�
J
(m)
k is the instantaneous gradient, all at time k and

stage m. In (4-5) �1 is the update step-size and in (4-8)-
(4-10) and (4-15)-(4-16), �2 and �3, respectively, are the
forgetting factors (> 0; < 1).
Running Cost. To monitor the convergence of the equal-
izers in various stages of the algorithm, it is useful to cal-

culate a running cost with the sign. Let ~J (m)
k denote the

running cost for the m�th stage at time k, given by

~J (m)
k =

m
(m)
4k � jem(m)

2k j
2

m
(m)2
2k

� 2 (4� 21)

where m(m)
2k , em(m)

2k and m
(m)
4k are computed as in (4-8)-(4-

10) but with a smaller �2.

5. FURTHER MODIFICATIONS

5.1. MMSE Signal Separation
5.1.1. Non-recursive Processing

A by-product of the solutions of Secs. 3 and 4 is the
estimates of the system/channel impulse response. These
estimates can be used to design MMSE estimators of
F (i)(z)wi(k) with a controlled delay d to obtain an \op-
timum" performance (ignoring any e�ects of additive noise

on the channel estimates). Let F(i)
l denote the i�th column

of Fl. We wish to design a linear MMSE �lter (equalizer)

of length Le+1 to estimate ey(j)(k� d) as bey(j)(k� d) given
y(l) for l = k; k� 1; � � � ; k � Le + 1 where d � 0,

ey(j)(k) := F (j)(z)wj(k) =

LX
l=0

F
(j)
l wj(k � l); (5� 1)

bey(j)(k � d) :=

Le�1X
i=0

Giy(k � i): (5 � 2)

Using the orthogonality principle, the desired solution is
given by

[ G0 � � � GLe�1 ] = �2wj [ Hd � � � Hd�Le ]R�1yy
(5� 3)

where Ryy denotes a [NLe]� [NLe] correlation matrix with
Ryy(j � i) as its ij-th block element,

Ryy(p) := Efy(t+ p)yH(t)g; Hd�p :=

LX
k=0

F
(j)
k F

(j)H
k+d�p:

(5� 4)
In practice, we replace all the unknowns by their estimates.
Also we design the equalizer only up to a scale factor by
omitting �2wj from (5-3).

Remark 1. Selection of Delay d: In designing (5-2) the
delay d was pre-determined. One may choose to select d
via exhaustive optimization as detailed below. The MMSE
when (5-2) is used can be expressed as

J (d) = trE
�ey(j)(k � d)ey(j)H(k � d)

	
� J 0(d) (5� 5)

where
J 0(d) := �4wj trHR

�1
yyH

H; (5� 6)

H := [ Hd Hd�1 � � � Hd�Le ] : (5� 7)

Since the �rst term on the right-side of (5-5) is independent
of d, minimizing J (d) w.r.t. d is equivalent to maximizing
��4wjJ

0(d). 2

5.1.2. Adaptive Implementation

Note that R�1yy does not depend upon the stage m of the
algorithm of Sec. 4. Its computation can easily be recursi-
�ed by using the matrix inversion lemma: see Table 13.1 on
p. 569 in [13]. Denote the data-based adaptive estimate of

R�1yy at time k as Pyy(k). Let H
(m)
l (k) denote the estimate

of Hl at stage m and time k of the multistage algorithm of

Sec. 4. Note that eF(m)
n (k) in (4-14) (see also (3-5)) denotes

an estimate of F
(i)
n for some i 2 f1; 2; � � � ;Mg (up to a scale

factor and time shift). Therefore, from (5-2) and (5-5) we
obtain the adaptive implementation at stage m; details are
omitted.

5.2. Adaptive Filter Reinitialization
In the source-iterative (multistage) approaches of Secs. 3
and 4, any errors in cancelling the extracted sources from
the preceding stages l = 1; 2; � � � ;m � 1 a�ect the perfor-
mance at stage m. The only stage that is immune to this
phenomenon is stage m = 1. A possible solution to alle-
viate this error propagation from stage-to-stage is to use
parallel stages where we still have M stages for M sources
but they all operate directly on the given data record in
parallel but with di�erent initializations of the equalizers.
The problem here is how to ensure that each stage con-
verges to a distinct source. Here we propose to initialize
the parallel stages using the results of the serial multistage
implementation of Sec. 4 coupled with an MMSE solution
similar to that of Sec. 5.1. For stage m = 1, there are no
changes to the algorithm of Sec. 4. For stages m � 2, run
the algorithm of Sec. 4 till the running cost (4-21) reaches
a steady-state. Given the estimates of the subchannel im-
pulse response at stage m, we can design an MMSE �lter
(in a fashion similar to Sec. 5.1.2) to estimate wj(k � d)
given y(l) for l = k; k� 1; � � � ; k�Le+1. Let the extracted

wj(k) at stage m be denoted by w(m)(k). Mimicking Sec.
5.1.2, a recursive MMSE solution at stage m and time k is
given by

bw(m)(k� d) :=

Le�1X
i=0

G
(m)
i (k)y(k� i) (5� 8)

where �
G

(m)
0 (k) G

(m)
1 (k) � � � G

(m)
Le�1(k)

�
=
� eF(m)H

d (k) � � � eF(m)H
0 (k) 0 � � � 0

�
Pyy(k):

(5� 9)

At stage m and time k, bw(m)(k � d) is an MMSE estimate

(with delay d) of e(m)(k) for the parallel implementation.

Note that C(z) =
PLe�1

i=0
G

(m)
i (k)z�i is the desired MMSE

initializer.



6. SIMULATION EXAMPLE

Take N=3 and M=2 in (2-2) with

F
(1)(z) =

"
0:2 + 0:8z�1 + 0:4z�2

0:3z�1 � 0:6z�2

0:

#
;

F
(2)(z) =

"
0:5� 0:3z�1

�0:21z�1 � 0:5z�2 + 0:72z�3 + 0:36z�4 + 0:21z�6

0:

#
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Fig. 1.
(Algorithm of Sec. 4, no reinitialization)
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SNR = 5.2dB

The input fw1(k)g is an i.i.d. complex Gaussian-mixture
with 4th normalized cumulant as 0.7433 . The input
fw2(k)g is an i.i.d. 4-QAM sequence with 4th normalized
cumulant as �1. The additive noise is white, complex Gaus-
sian. The powers of fwj(k)g were scaled so as to have

EfkF (1)(z)w1(k)k
2g = EfkF (2)(z)w2(k)k

2g. The perfor-
mance measure was taken to be the signal-to-interference-
and-noise ratio (SINR) per source signal, de�ned as

SINRj =
Efkey(j)(k)k2

Efkey(j)(k)� b�bey(j)(k)k2g (6� 1)

where b� is that value of the scalar � which minimizes

Efkey(j)(k) � �bey(j)(k)k2g. The length of the inverse �l-
ters was 11 samples per sensor (output) for the approach
of Sec. 4. The initial guess for the tap gains was: set
ci(5) = 1 for i = m for the m�th stage equalizer (m = 1; 2)
with the remaining tap gains set to zero. The algorithm
step sizes and forgetting factors for each stage m were cho-
sen as: �1 = 0:0005, �2 = 0:015 and �3 = 0:0005 when


(m)
4k � 0 (see (4-11)), and �1 = 0:00025, �2 = 0:0075 and

�3 = 0:0005 when 
(m)
4k > 0. For the running cost (4-21)

computation we selected \�2"=0.002 in (4-8)-(4-10). The
parameters L1 and L2 in (4-13) were selected as L1 = 15
and L2 = 6. To design the MMSE equalizers/�lters we took
Le = 11 and d was optimized following Remark 1 of Sec.
5.1.1 over the range [�15; 6].
Fig. 1 shows the evolution of the average running cost

J
(m)
k (see (4-21)), averaged over 100 Monte Carlo runs (af-

ter `assigning' each equalizer cost to its corresponding ex-
tracted source) without using any �lter reinitialization. Fig.

2 shows J
(m)
k when reinitialization (after 12000 samples)

of Sec. 5.2 is used. It turns out that source 1 (w1(k)) is
extracted �rst, so that reinitialization only a�ects source
2 (4-QAM). Table I shows the average SINR (based on
100 runs) for the two sources at the end of the run (i.e.
at k = 18000) without and with �lter reinitialization, for

various SNR's. The SINR's were computed using the so-
lution (4-13) as well as the MMSE solution of Sec. 5.1.2.
It is seen that blind signal separation bene�ts from both,
MMSE signal separation as well as �lter reinitialization.
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Fig. 2.
(Algorithm of Sec. 4 with reinitialization of Sec. 5.2)
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TABLE I. Average SINR after blind separation. Se-
rial: Algorithm of Sec. 4; Parallel: Algorithm of Sec. 4 +
reinitialization of Sec. 5.2.

SOURCE 1 (Gaussian mixture)
SNR serial parallel

(4-13) MMSE (4-13) MMSE

25.2 dB 8.653 10.667 8.653 10.667
18.2 dB 8.447 10.317 8.447 10.317
12.2 dB 7.807 9.253 7.807 9.253
5.2 dB 5.893 6.511 5.893 6.511

SOURCE 2 (4-QAM)
SNR serial parallel

(4-13) MMSE (4-13) MMSE

25.2 dB 11.621 12.647 16.123 15.271
18.2 dB 11.198 12.134 15.078 14.351
12.2 dB 9.876 10.591 12.445 12.070
5.2 dB 6.505 6.862 7.746 7.626


