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ABSTRACT

The problem of closed-loop system identi�cation given
noisy input-output measurements is considered. The
closed-loop system operates under an external cyclostation-
ary input which is not measured. Noisy measurements of
the (direct) input and output of the plant are assumed to
be available. The various disturbances a�ecting the sys-
tem are either stationary or cyclostationary with cycle fre-
quencies di�erent from the input cycle frequencies. The
closed-loop system must be stable but it is allowed to be
unstable in open-loop. A frequency-domain parametric so-
lution is proposed and analyzed using an equation error
formulation, and cyclic spectrum and cross-spectrum of the
input-output measurements. The parameter estimator is
shown to be consistent. A simulation example using an un-
stable open-loop system is presented to illustrate the pro-
posed approach.

1. INTRODUCTION

Consider the following widely used input-output linear
system model:

y(t) = H(q)u(t) + e(t) (1 � 1)

where fu(t)g is the measured input sequence, t is discrete-
time, fy(t)g is the noisy output, and fe(t)g is a measure-
ment noise (disturbance) sequence. With q�1 denoting the
backward-shift operator (i.e. q�1u(t) = u(t�1)), the linear
system H(q) represents an IIR system:

H(q) =

1X
i=1

h(i)q�i: (1� 2)

The above system operates in a closed-loop (see Fig. 1)
where the input u(t) in (1-1) is determined through linear
feedback as

u(t) = v(t) � F (q)y(t) (1 � 3)

where F (q) =
P
1

i=0
f(i)q�i is the controller transfer func-

tion and fv(t)g is some external input sequence.
Given an input-output record fu(t); y(t); t = 1; 2; � � �g,

but the underlying true system model H(q) unknown, it
is of much interest in control, communications and signal
processing applications to �t a rational function model

G(q) :=
B(q)

A(q)
=

Pnb
i=1

biq
�i

1 +
Pna

i=1 aiq
�i

(1� 4)

to given input-output record [1]-[5]. A wide variety of ap-
proaches exist [1]-[5],[8],[9].
The main objective of this paper is to provide a

frequency-domain solution using cyclic spectral analysis to
the problem of closed-loop system identi�cation given time-
domain input-output data. In the presence of the feedback
and noise e(t), the input fu(t)g is correlated with the output
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fy(t)g so that the standard spectral analysis (and related
approaches) yields biased estimators of the system transfer
function and related parameters. For further details, see
[1], [4, Chapter 10] and [5]. Recently in [1] a nonparamet-
ric approach using cyclostationary and/or non-Gaussian in-
puts was presented to solve this problem. Ref. [1] requires
the open-loop transfer function to be stable and the ap-
proach presented therein is nonparametric. In this paper
we focus on second-order cyclostationarity and paramet-
ric approaches. Unlike [1], we allow the open-loop transfer
function H(ej!) to be unstable.

Fig. 1. Closed-loop system block diagram.

2. PRELIMINARIES

A zero-mean discrete random sequence fu(t)g with its
second-order cumulant function cuu(t; �) = cumfu(t +
�); u(t)g = Efu(t + �)u(t)g is called a second-order al-
most cyclostationary sequence if its second-order cumulant
function is an almost periodic function in t [7]. Assume
that cuu(t; �) admits a Fourier series representation w.r.t.
t. Then

cuu(t; �) =
X

�2Auu

Cuu(�; �)e
j�t; (2� 1)

Cuu(�; �) = lim
T!1

1

T

T�1X
t=0

cuu(t; �)e
�j�t; (2� 2)

Auu := f� : Cuu(�;�) 6= 0; 0 � � < 2�g: (2� 3)

The Fourier coe�cient Cuu(�; �) is called the second-order
cyclic cumulant at cycle frequency � [7]. The set Auu is the
countable set of cycle frequencies of the second-order cyclic
cumulant of fu(t)g. The time-varying and cyclic cumulant
spectra, respectively, of fu(t)g are de�ned as

Suu(t;!) :=

1X
�=�1

cuu(t; �)e
�j!� ; (2� 4)

Suu(�;!) :=

1X
�=�1

Cuu(�;�)e
�j!� : (2� 5)

Suppose that u(t) is �ltered by a linear, time-invariant,
BIBO stable �lter G(q) =

P
i
g(i)q�i. Consider the second-

order cross-cumulant function

cyu(t;�) := cumfy(t+ �); u(t)g = Efy(t+ �)u(t)g



=

1X
m=�1

g(m)cuu(t; � �m): (2� 6)

Mimicking (2-2), de�ne the cyclic cross-cumulant

Cyu(�; �) := lim
T!1

1

T

T�1X
t=0

cyu(t; �)e
�j�t: (2� 7)

Using (2-2), (2-6) and (2-7), we have

Cyu(�;�) =

1X
m=�1

Cuu(�; � �m)g(m): (2 � 8)

Mimicking (2-5), de�ne the cyclic cross-spectrum

Syu(�;!) :=

1X
�=�1

Cyu(�;�)e
�j!� = Suu(�;!)G(e

j!)

(2� 9)
where we have used (2-5) and (2-8), and

G(ej!) := G(q)
��
q=ej! =

X
m

g(m)e�j!m: (2� 10)

Finally, if cuy(t; �) = Efu(t + �)y(t)g etc., then it follows
in a manner similar to (2-6)-(2-10) that

Suy(�;!) = Suu(�;!)G(e
j(��!)) (2� 11)

3. MODEL ASSUMPTIONS

We impose the following conditions on (1-1):
(AS1) H(q) is strictly causal, that is limq!1 H(q) = 0,

so that y(t) depends only on past input values.

(AS2) [1 +H(q)F (q)]�1 is asymptotically stable.
(AS3) fe(t)g and fv(t)g are zero-mean almost cyclosta-

tionary random processes with cycle frequency sets
Aee and Avv, respectively. There exists a known
set of non-zero cycle frequencies AM = f�g �
Avv for which Sev(�;!) = See(�;!) = 0 and
Svv(�;!) 6= 0:

(AS4) For some � 2 AM, jSvv(�;!)j > 0 for almost all
! 2 [0; �] if the proposed approaches utilize the
entire frequency range [0; �]. If only �nite num-
ber of frequencies are used then jSvv(�;!)j need
be non-zero only for this frequency set.

(AS5) Let fzm(t)gkm=0 be (k+1) random sequences such
that zm(t) 2 fy(t); u(t); v(t); e(t)g. Let � (k) :=

[�1; : : : ; �k]
T . Let cz(t; � (k)) denote the (k + 1)st-

order joint cumulant function cumfz0(t); z1(t +
�1); : : : ; zk(t+ �k)g. Let

Cz(�; � (k)) := limT!1
1

T

T�1X
t=0

cz(t;� (k))e
�j�t:

The following summability conditions hold true for
each j = 1; : : : ; k and each k = 1; 2; 3; � � � :

1X
�1;:::;�k=�1

sup
t

[1 + j�jj]jcz(t; � (k))j <1 (3-1)

1X
�1 ;:::;�k=�1

sup
t

[1 + j�jj]jCz(�; � (k))j <1 (3-2)

for each � 2 AM:

Let the vector of unknown parameter be given by

� = [a1 � � � ana b1 � � � bnb ]
T : (3� 3)

4. A FREQUENCY-DOMAIN SOLUTION

It follows from (1-1)-(1-3) that

y(t) = Q(q)v(t) + �(t) = s(t) + �(t); (4� 1)

where the closed-loop transfer function Q(q) and the output
error sequence �(t) are given by

Q(q) = H(q)[1 +H(q)F (q)]�1; (4-2)

�(t) = [1 +H(q)F (q)]�1e(t): (4-3)

From (1-1) and (1-3), under (AS2), we have

u(t) =
1

1 +H(q)F (q)
[v(t)� F (q)e(t)]: (4� 4)

Using (2-6){(2-11), (4-1){(4-4) and (AS3), we have

Suu(�;!) = D�1(�; ej!)Svv(�l;!); (4-5)

Syu(�;!) = H(ej!)D�1(�; ej!)Svv(�;!); (4-6)

for each � 2 AM where

D(�;ej!) = [1+H(ej!)F (ej!)][1+H(ej(��!))F (ej(��!))]:
(4� 7)

It follows from (4-5) and (4-6) that under (AS2)-(AS4),

H(ej!) =
Syu(�;!)

Suu(�;!)
8� 2 AM: (4� 8)

The basic approach to model parameter estimation consists

of two steps. First obtain a consistent estimator bH(ej!) of

H(ej!) via consistent estimators bSyu(�;!) and bSuu(�;!)
of Syu(�;!) and Suu(�;!), respectively, based upon the
input-output record fu(t); y(t); t = 1; 2; � � � ; Tg. Next es-
timate the system parameters using the estimated transfer
function matrix as \data;" this part follows [3]. For sim-
plicity, we consider estimates based on only a single cyclic
frequency � 2 AM.

4.1. Transfer Function Estimator

This requires estimation of Syu(�;!) and Suu(�;!) for
some known � in AM (see (AS3)). We will follow the
approach of smoothing in frequency domain [7]. Given a
record of length T , let Y (!) denote the DFT of fy(t); 1 �
t � Tg given by

Y (!k) =

T�1X
t=0

y(t+ 1)exp(�j!kt); (4� 9)

!k =
2�

T
k; k = 0; 1; � � � ; T � 1: (4� 10)

Similarly de�ne U(!k). Given the above DFT's, following
[7] we de�ne the cross- and auto-cyclic-spectrum estimators
as

bSyu(�;k) = 2�

T 2

T�1X
s=1

W (T )(!k�s)Y (!s)U(��!s); (4� 11)



bSuu(�;k) = 2�

T 2

T�1X
s=1

W (T )(!k�s)U(!s)U(�� !s) (4� 12)

for 1 � k � T � 1, where the scalar weighting function
W (T )(�) is given by

W (T )(�) = B�1T

1X
i=�1

W
�
B�1T [�+ 2�i]

�
(4� 13)

such that W (�), �1 < � < 1, is real-valued, even,
of bounded variation satisfying

R1
�1

W (�)d� = 1 andR
1

�1
jW (�)jd� <1 [6, Secs. 5.6 and 7.4]. It is convenient

to take W (�) = 0 for j�j > 2� and W (�) = (4�)�1 for
j�j � 2�. In this case (4-11) involves uniform weighting of
the 2BT T +1 cyclic cross-periodogram ordinates whose fre-
quencies fall in the interval (!k� 2�BT ; !k+2�BT ). Thus
(4-11) reduces to

bSyu(�;k) = 1

T (2mT + 1)

mTX
i=�mT

Y (!k�i)U(�� !k�i);

(4� 14)
where mT = BT T . Similar modi�cation holds for (4-12).

Lemma 1. Let BT be such that as T ! 1, we have
BT ! 0 and BT T ! 1. Let kl(T ) with T = 1; 2; � � � be
a sequence of integers such that limT!1kl(T )=T = fl, a
�xed frequency (in Hz). Then under (AS5),

limT!1EfbSyu(�;kl(T ))g = Syu(�; 2�fl); (4� 15)

var
�bSyu(�;kl(T ))� = O(��1T ) (4� 16)

where var(X) := EfjXj2g � jEfXgj2 and

�T =
BTT

2�
R
1

�1
W 2(�)d�

; (4-17)

= 2mT + 1; if (4-14) is used. (4-18)

Convergence in (4-15)-(4-16) is uniform in f . �
Proof: It follows from some straightforward modi�cations
of the proof of Theorem 3.3 in [7]. Theorem 3.3 of [7] deals
with cyclic auto-spectrum whereas here we are also con-
cerned with cyclic cross-spectrum. 2

Clearly, Lemma 1 holds true when we replace y with u
in (4-15) and (4-16).
In light of (4-14) de�ne a coarser frequency grid:

e!l = 2�l(2mT + 1)

T
+

2�(mT T + 1)

T
(4� 19)

with l = 0; 1; � � � ; LT � 1 where LT = b T
2mT+1

c. Lemma 1

implies mean-square consistency of bSyu(�;kl(T )), hence it
implies that (i.p. stands for in probability)

limT!1
bSyu(�;kl(T )) = Syu(�; 2�fl) i:p: (4� 20)

limT!1 bSuu(�;kl(T )) = Suu(�; 2�fl) i:p: (4� 21)

Convergence in (4-20)-(4-21) is uniform in f by virtue of
Lemma 1. Using the estimated cyclic spectra we have an
estimator of the system transfer function at frequency !k

bH(ej!k ) = bS�1uu (k)bSyu(k) (4� 22)

provided that bS�1uu (k) exists. If S�1uu (!k) exists (cf. (AS4)
and (4-5)), then it follows from [11, Thm. 1.7, p. 24 ] that

limT!1
bH(ej2�f ) = limT!1

bS�1uu (�;k(T ))bSyu(�;k(T ))
= H(ej2�f ) i:p: (4� 23)

where limT!1k(T )=T = f . Convergence in (4-23) is uni-
form in f .
Remark 1. In the rest of the paper we use !k to denote a
frequency on the coarse grid (4-19) and use �k to denote a
�xed frequency independent of record length T . 2

4.2. An Equation Error Formulation

It follows from the de�nition of G(ej!) (cf. (1-4) ) that

�
naX
i=1

G(ej�k )aie
�j�ki +

nbX
i=1

bie
�j�ki = G(ej�k)

(4� 24)
for any �k. Noting that ai's and bi's are real and G(ej!) is,
in general, complex-valued, we rewrite (4-24) after replacing

G(ej�k) with the true transfer function estimate bH(ej�k),
as

�
naX
i=1

Ref bH(ej�k )e�j�kigai +
nbX
i=1

Refe�j�kigbi

= Ref bH(ej�k )g; (4� 25)

�
naX
i=1

Imf bH(ej�k )e�j�kigai +
nbX
i=1

Imfe�j�kigbi

= Imf bH(ej�k )g: (4� 26)

Using distinct frequencies �k (k = 1; 2; � � � ; L) over (0; �)
(one may choose this set from the coarse grid (4-19)), (4-
25) and (4-26) may be rewritten in a matrix-equation form
as

FT � = fT (4� 27)

where � is as in (3-3) and

fT = [Ref bH(ej�1)g ... Imf bH(ej�1 )g ... � � �
... Ref bH(ej�L)g

... Imf bH(ej�L )g ]T ; (4� 28)

and FT is a (2L) � (na + nb) matrix composed of appro-
priate elements from the left-side of (4-25) and (4-26). An
ordinary least-squares solution to (4-27) is given by

b�1T = (FT
TFT )

�1
F
T
T fT (4� 29)

assuming that the inverse in (4-29) exists (see Remark 2
in Sec. 5 for conditions for its existence). A numerically
well-conditioned solution is obtained via a singular value
decomposition formulation.
The above least-squares formulation is equivalent to the

following formulation. Choose � to minimize the cost

JT (�) :=
1

L

LX
l=1

���A(ej�l ; �) bH(ej�l ) � B(ej�l ; �)
���2

(4� 30)
where

B(ej�l ; �) =

nbX
i=1

bie
�j�l ; (4� 31)



A(ej�l ; �) = 1 +

naX
i=1

aie
�j�l : (4� 32)

De�ne the estimator

b�2T = arg fmin�2�CJT (�)g (4� 33)

where �C is a compact set.

5. CONVERGENCE ANALYSIS

In this section we prove weak consistency of the proposed
approach when the true system lies within the model set,
i.e. when H(q) is of the type G(q). Let us denote G(q)
parametrized by � asG(q; �). Let �0, na0 and nb0 denote the
true values of �, na and nb, respectively, such that H(q) =
G(q; �0). We �rst consider (4-29).

Theorem 1. Suppose that H(q) = G(q; �0) for some �0
with model orders na0 and nb0. Under the model assump-
tions (AS1)-(AS5), if min(na � na0; nb � nb0) = 0 and
na + nb � L, then the estimator (4-29) is weakly consis-

tent (i.e. b�1T converges i.p. to �0 as T !1). �
Proof. Mimic the proof of Theorem 1 in [2]. 2

Remark 2. It is shown in the proof of Theorem 1 of [2]
that when min(na�na0; nb�nb0) = 0, the inverse in (4-29)
exists for large T . 2

Next we consider (4-33) which is useful when min(na �
na0; nb � nb0) � 0.

Theorem 2. Suppose that H(q) = G(q; �0) for some
�0 with model orders na0 and nb0. Under the model as-
sumptions (AS1)-(AS5), if min(na � na0; nb � nb0) � 0,

na+nb � L, and �0 2 �C, then the estimator b�2T speci�ed
by (4-33) converges i.p. to a set D where

D := f� jB(q; �)=A(q; �) = H(q) = G(q; �0)g : (5� 1)

Proof. Mimic the proof of Theorem 2 in [2]. Note that the
convergence to the set D is to be interpreted in the sense
of Ljung [5, p. 215]. 2

When min(na � na0; nb � nb0) = 0, D = f�0g.
6. SIMULATION EXAMPLE

This example is based upon [10]. The true open-loop plant
H(q) is given by

H(q) =
q�1 + 0:5q�2

1 � 1:85q�1 + 0:525q�2
; poles: 1:5; 0:35 :

The controller F (q) is given by F (q) = [0:35�0:28q�1][1�
0:8q�1]�1. The closed-loop system is stable. We take

e(t) =

1 � 1:795q�1 + 1:4328q�2 � 0:59608q�3 + 0:08738q�4

1 � 1:7q�1 + 0:33q�2 + 1:063q�3 � 0:6408q�4
�(t)

where �(t) � N (0; �2) and i.i.d. Finally, the external input
v(t) is taken to be cyclostationary

vf (t) :=
p
2 cos (3�t=8) �(t)

where �(t) � N (0; 1), i.i.d. and independent of f�(t)g. This
leads to AM = f0; 0:75�; 1:25�g. The cycle frequency at
� = 0:75� which was selected for system identi�cation via
cyclic spectral analysis. The power �2 of f�(t)g was scaled
to achieve a closed-loop SNR of 14 (11.46 dB) where refer-
ring to (4-1)-(4-3) we de�ne

SNR =
limT!1

1
T

PT

t=1
E[s2(t)]

limT!1
1
T

PT

t=1
E[�2(t)]

: (6� 1)

The required cyclic spectra (auto and cross) were es-
timated via frequency-domain averaging of cyclic peri-
odogram/ cross-periodogram using non-overlapping rectan-
gular windows (see (4-14)). Table 1 shows the results of
averages over 100 Monte Carlo runs based upon a record
length T = 2048 with 2m2048 + 1 = 23 in (4-14). Ta-
ble 2 shows the same for a record length T = 4096 with
2m4096 + 1 = 45.

TABLE 1 : results based on 100 Monte Carlo runs

T = 2048
Parameters True Mean � RMS

a1 �1.8500 �1.8501 0.0490 0.0490
a2 0.5250 0.5491 0.0507 0.0562
b1 1.0000 0.9793 0.0588 0.0624
b2 0.5000 0.4638 0.0595 0.0698

TABLE 2 : results based on 100 Monte Carlo runs

T = 4096
Parameters True Mean � RMS

a1 �1.8500 �1.8448 0.0357 0.0361
a2 0.5250 0.5297 0.0367 0.0370
b1 1.0000 0.9862 0.0367 0.0392
b2 0.5000 0.4902 0.0416 0.0427
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