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ABSTRACT better learning performance than the linear adaptive filters
) ) ) ] ~in time domain. However, these techniques are classified
The conventional linear adaptive filters are not effective 55 |inear systems since wavelet transform (WT) is a linear

for discriminating the transient ~wideband = signal transform. The optimal solution of these methods is the
components from noise. A recently developed waveletgame as the linear filtering. Therefore, the essential

shrinkage approach is able to maintain the function localyisadvantage of linear filtering methods will still exist.
regularity while suppressing noise however, it has only

been used in function estimation problems. In this paper, aXecently, Donoho [5, 6], and others have developed
new type of nonlinear filtering method for adaptive noise wavelet shrinkage methods for statistical applications. The
suppression is presented, based on shrinkage method. Aain purpose of the method is to estimate a wide class of
new class of shrinkage functions is also presented. Thdunctions in some smoothness spaces from their corrupted
filtering structure and the learning algorithm are (Py additive Gaussian noise) version [5]. The estimation
developed. The theoretical analysis proves convergence ifachieves asymptotically near optimal minimax mean-
certain statistical sense. The numerical results of oursquare error over a wide range of smoothness classes and
system are presented for both the standard and the nekeeps the regularity of the function at the same time.
shrinkage function and compared with the conventional However, there are some essential differences between
linear adaptive filter based techniques. Results indicatefunction estimation in noise and noise suppression in
that both the optimal solution and the learning Signals. For function estimation, the object is deterministic
performance are superior to the conventional methods. Ifunction and all of the data samples of the function are
is shown that our new shrinkage function performs betterused. For adaptive noise suppression in signal processing

than the standard shrinkage function. applications, we assume the signal is time-varying random
process and only the past data samples are known. The
1. INTRODUCTION objective of the adaptive system is to track the changes in

the system in real-time and continually seek the optimum
Large part of the adaptive signal processing deals with thein some statistical sense. Furthermore, in signal processing
problem of noise suppression [1, 2]. However, the linearapplications, we search for the optimal minimum mean-
filter is a simple modification of the spectrum of the signal square error solution using priori information for a
because the complex exponential functiogi§are the specific signal. The optimal minimax solution often only
eigenfunctions of any linear system. Therefore, when thehas theoretical meaning because it is often far from the
signal contains transient wideband components, linearoptimal solution for a specific practical problem.
filters are not effective for removing noise. For example,
some transient impulses can cause wideband componen
in the signal which often contain important information. In

In this paper, first a new class of nonlinear shrinkage
unctions is presented. Unlike the standard soft-

. . . }hresholding function, these new nonlinear shrinkage
such cases, linear filters in general are not capable o . ) -
functions have continuous derivative. Then a new

discriminating nonstationary wideband signal Componentsnonlinear filtering system using wavelet shrinkage method

from noise since both have similar spectrum. Also, several. . . )

X . is presented for adaptive noise suppression. The system

authors such as [3, 4] have investigated wavelet base X .

. AL . structure and the learning algorithm are developed. The

linear adaptive filtering techniques. These methods show . . .
theoretical analysis proves the convergence properties in

certain statistical sense. Finally, the numerical results of
This work was supported in part by NASA grant no. our system are presented for both standard and the new
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that both optimal solution and the learning performance

represents thdé-th scaling coefficients at scale Time

are superior to the conventional methods. It is also showrseriesv, can be constructed as

that our new shrinkage function performs better than the
standard shrinkage function.

2. ADAPTIVE NONLINEAR NOISE
SUPPRESSION BASED ON WAVELET
SHRINKAGE

2.1 A New Class Of Differentiable Shrinkage
Functions

The conventional soft-thresholding function is a

continuous function with discontinuous derivative. For

optimization problems, the continuous derivative or higher
order derivative is often desired. Furthermore, the
discontinuous derivative does not allow for optimal

solution using other higher order measures, such as Soblo
norm, as risk function. Motivated by the differentiable

sigmoidfunction which replaces the undifferentiable hard-
limited function in traditional neural network, a new class
of nonlinear shrinkage functions which have continuous
derivatives are constructed as follows:

E}H‘t—ﬁ, Xx<-t
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Obviously, n,(x,t) has continuous derivative. Note that
when k - o, n,(x,t) is just standard soft thresholding
function n(x,t) . Those shrinkage functiong, (x,t) will

have better numerical properties as will be shown in the
examples.

2.2 Adaptive Noise Suppression Using Wavelet
Shrinkage

The noise suppression problem in signal processing i
similar to but essentially different with function estimation.
As known, it can be formulated as follows. Assume a
random signals is transmitted over a channel to a sensor

that receives the signal with an additive uncorrelated noise

n,. Then the received signaly, is given by
y,=s+n, i0Z, whereZ denotes the integer set. In the

wavelet domain (after the DWT), the signal coefficients
series is denoted as;, the noise coefficients series is

denoted asz, and the received signal coefficients series is
denoted asu,, where u, =v +2z, i0Z. Note that the

wavelet coefficients can be easily calculated in real-time
using pyramid filter banks [7, 8]. Assuma§ k) represents
thek-th wavelet coefficient at scajej = 1,...,J andv(0K)
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Similarly, other wavelet coefficients time series can also be
constructed. Assum§ is the output estimation of , and

§, s, n are statistically stationary. For orthogonal
DWT, the risk function is
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where the estimated wavelet coefficientsare obtained
using shrinkage of wavelet coefficients of received
gignal, i.e.,u(j,k) =n,(u(j,k).t)-

In conventional linear adaptive filtering scheme, the filter
coefficients are selected adaptively toward the optimal
solution. Similarly, in our nonlinear adaptive noise
suppression, we will attempt to select the paranetethe
nonlinear thresholding function, (x,t) adaptively toward
the optimal solution. Note that the scaling coefficients
u(0,k) are normally kept without shrinkage, andenotes
vector [t,t,---,t,]" in scale dependent thresholding

scheme.
We develop a neural network structure to implement the
adaptive noise suppression in wavelet domain using

wavelet shrinkage scheme. The adaptive system structure
of the proposed method is shown in Fig. 1. In Figy'ljs

the reference signal, and’' is the reference wavelet
coefficients series in wavelet domain. The estimafioof

v, is calculated using nonlinear shrinkage functions. The
error seriesg; =¥, —y in wavelet domain. The following

adaptive learning algorithm for neural network so that the
risk J(t) in (2) can be minimized by adjusting parameter
in real-time.

Step 1.Initialize parametet =t .

Step 2.Each time a new sample in wavelet domgjnand
v, is encountered, adjust using following scheme,

t(i+1) =t(i)-Atf), 3)
where
At(i) =or(i)aadltia:i , 4)

where a (i) =diag[a,(i),a,(i),---,a,()] is learning rate
matrix of each step andr;(i) is the learning rate for
parametet;.



In this way, the riskI(t) can be minimized and the optimal reference noise signal = n +n’ [2]. (Using Weiner filter
parametert can be obtained adaptively. However, in theory, it is easy to find that the ideal performance will be
practice, the signal time serigs is unknown. Usings as worse if y' is used as a reference signal for ANC.) The

reference signal serieg’ is impractical. In our scheme, 16-tap linear filter is chosen for simulation.

we produce the reference signal with the same | Taple 1, the mean square errors (MSE) of different
transmitted signal time series plus noise seriex, adaptive methods are given. WANSO and WANSI1
which is statistically uncorrelated with noise sengsi.e., ~ represents the estimated MSE when 2048 by wavelet
shrinkage based adaptive noise suppression (WANS),
using standard soft-thresholding functign(x,t) and the

proposed nonlinear functiorn,(x,t), respectively. ANC

3. THE CONVERGENCE PERFORMANCE represents the estimated MSE when2048. SOPTO and
OF THE LEARNING ALGORITHM SOPT1 represent the optimal MSE by numerical method

o - ) ) o for scale dependent threshold selection, usjpk,t) and
Similar to the traditional linear adaptive filtering (x.1), respectively. ANC-OPT representptimal MSE
technique [1, 2], the analysis of the algorithm will be N5(% ! p y._ ] ) P P )
based on stationary signals, although our nonlinearPy the ideal linear Weiner filter using ANC scheme. In Fig.
adaptive filtering methods are designed to track 3. the dotted line, dashed line and solid line represent the
nonstationary random input. This is a usual idealization!€arning curves of ANC, WANSO and WANS1 schemes,

used so that the analysis becomes relatively tractable. If€SPectively.

following theorems, the convergence properties of the|t js indicated in Table 1 that the optimal solutions of the
adaptive algorithm described in (3) and (4) are given. new system (SOPTO, SOPT1) are much better than ANC
Theorem 1Suppose a random signal time sergsand a (ANC-OPT). The learning results of the_ new sys_tem
L . - . . (WANSO, WANSL1) are very close to the optimal solutions
noise time series) are statistically stationary and noise | i the learning results of ANC are not as close to the
n is a white Gaussian random process with distribution optimal solutions. In Fig. 3, it is also shown that practical
N(,0). If n.(xt) is used as nonlinear shrinkage learning performances of the proposed methods are much
function, then there exists at most one optimal solution better than conventional ANC scheme (based on linear

yi =5+ . This is easy to implement by receiving the
signal in another channel.

which minimize @) in (2) and its every componetjt=0. adaptive filtering technique). It is also clearly shown that
_ o, our new shrinkage function (SOPT1 and WANS1)
Theorem 2 Suppose there exists optimal for J(t). outperforms the standard shrinkage function in both

Assume reference signal ys=5 + 1f , wheren' is a white optimal solutions and learning performance. Further
normal random process which is statistically uncorrelated numerical results show the similar performance.

with n. Using the wavelet shrinkage based learning

algorithm described in the above section (see (3) and (4)) 5. CONCLUSION

and ny(xt) as nonlinear shrinkage function, then . this paper, a new type of nonlinear adaptive system for
lim, . E{)} =t", whena(i) is suitable selected, i.e., the adaptive noise suppression based on wavelet shrinkage
learning algorithm is convergent in the mean. scheme and a new class of nonlinear shrinkage functions
were presented. A new type of wavelet shrinkage based
neural network and its adaptive learning algorithm are
4. NUMERICAL EXAMPLES developed to construct the adaptive system for noise
suppression. The theoretical analysis results of
The test signals: Blocks, Bumps, HeaviSine and Doppler,convergence properties for the learning algorithm are
which were used by most of other wavelet shrinkage Presented. The numerical results show that the proposed
related literature, are shown in Fig. 2. The signal length ismethods perform much better than conventional linear
2048 samples. These series are used for adaptive signdilter based method for a wide range of signals. The further
processing, ie., on|y the past Samp|es before the Curren@evelopment based on the similar idea but different risk
time of received signals are assumed to be known. Assuméunctions, such asSURE risk etc., have also been
the signal to noise raticSNR= 0/, = 7, for all signals investigated in [9]. Both theoretical analysis and numerical
results show that this new type of adaptive system is very
effective for adaptive processing related applications.

The proofs of the above two theorems are in [9].

and the reference signalg = 5 + 7 . Duabechies 16-tap

wavelet filter is used. For traditional adaptive noise
canceling (ANC) scheme, we take the commonly used
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Fig. 1 The adaptive system for noise suppression
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Fig. 2. Four test signals

Fig. 3. Learning curves of different adaptive methods



