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ABSTRACT  

The conventional linear adaptive filters are not effective
for discriminating the transient wideband signal
components from noise. A recently developed wavelet
shrinkage approach is able to maintain the function local
regularity while suppressing noise however, it has only
been used in function estimation problems.  In this paper, a
new type of nonlinear filtering method for adaptive noise
suppression is presented, based on shrinkage method. A
new class of shrinkage functions is also presented. The
filtering structure and the learning algorithm are
developed. The theoretical analysis proves convergence in
certain statistical sense. The numerical results of our
system are presented for both the standard and the new
shrinkage function and compared with the conventional
linear adaptive filter based techniques. Results indicate
that both the optimal solution and the learning
performance are superior to the conventional methods.  It
is shown that our new shrinkage function performs better
than the standard shrinkage function.

1. INTRODUCTION

Large part of the adaptive signal processing deals with the
problem of noise suppression [1, 2]. However, the linear
filter is a simple modification of the spectrum of the signal
because the complex exponential functions ejω are the
eigenfunctions of any linear system. Therefore, when the
signal contains transient wideband components, linear
filters are not effective for removing noise. For example,
some transient impulses can cause wideband components
in the signal which often contain important information.  In
such cases, linear filters in general are not capable of
discriminating nonstationary wideband signal components
from noise since both have similar spectrum. Also, several
authors such as [3, 4] have investigated wavelet based
linear adaptive filtering techniques. These methods show
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better learning performance than the linear adaptive filters
in time domain.  However, these techniques are classified
as linear systems since wavelet transform (WT) is a linear
transform. The optimal solution of these methods is the
same as the linear filtering. Therefore, the essential
disadvantage of linear filtering methods will still exist.

Recently, Donoho [5, 6], and others have developed
wavelet shrinkage methods for statistical applications. The
main purpose of the method is to estimate a wide class of
functions in some smoothness spaces from their corrupted
(by additive Gaussian noise) version [5]. The estimation
achieves asymptotically near optimal minimax mean-
square error over a wide range of smoothness classes and
keeps the regularity of the function at the same time.
However, there are some essential differences between
function estimation in noise and noise suppression in
signals. For function estimation, the object is deterministic
function and all of the data samples of the function are
used. For adaptive noise suppression in signal processing
applications, we assume the signal is time-varying random
process and only the past data samples are known. The
objective of the adaptive system is to track the changes in
the system in real-time and continually seek the optimum
in some statistical sense. Furthermore, in signal processing
applications, we search for the optimal minimum mean-
square error solution using a priori information for a
specific signal. The optimal minimax solution often only
has theoretical meaning because it is often far from the
optimal solution for a specific practical problem.

In this paper, first a new class of nonlinear shrinkage
functions is presented. Unlike the standard soft-
thresholding function, these new nonlinear shrinkage
functions have continuous derivative. Then a new
nonlinear filtering system using wavelet shrinkage method
is presented for adaptive noise suppression. The system
structure and the learning algorithm are developed. The
theoretical analysis proves the convergence properties in
certain statistical sense. Finally, the numerical results of
our system are presented for both standard and the new
shrinkage function and compared with the conventional
linear adaptive filter based techniques. Results indicate



that both optimal solution and the learning performance
are superior to the conventional methods.  It is also shown
that our new shrinkage function performs better than the
standard shrinkage function.

2. ADAPTIVE NONLINEAR NOISE
SUPPRESSION BASED ON WAVELET

SHRINKAGE

2.1 A New Class Of Differentiable Shrinkage
Functions

The conventional soft-thresholding function is a
continuous function with discontinuous derivative. For
optimization problems, the continuous derivative or higher
order derivative is often desired. Furthermore, the
discontinuous derivative does not allow for optimal
solution using other higher order measures, such as Soblov
norm, as risk function. Motivated by the differentiable
sigmoid function  which replaces the undifferentiable hard-
limited function in traditional neural network, a new class
of nonlinear shrinkage functions which have continuous
derivatives are constructed as follows:
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Obviously, ηk x t( , )  has continuous derivative. Note that

when k → ∞ , ηk x t( , )  is just standard soft thresholding

function ηs x t( , ) . Those shrinkage functions ηk x t( , )  will

have better numerical properties as will be shown in the
examples.

2.2 Adaptive Noise Suppression Using Wavelet
Shrinkage

The noise suppression problem in signal processing is
similar to but essentially different with function estimation.
As known, it can be formulated as follows. Assume a
random signal si  is transmitted over a channel to a sensor

that receives the signal with an additive uncorrelated noise
ni . Then the received signal yi  is given by

y s n ii i i= + ∈, Z , whereZ  denotes the integer set. In the

wavelet domain (after the DWT), the signal coefficients
series is denoted as vi , the noise coefficients series is

denoted as zi  and the received signal coefficients series is

denoted as ui , where u v z ii i i= + ∈, Z . Note that the

wavelet coefficients can be easily calculated in real-time
using pyramid filter banks [7, 8]. Assume v(j,k) represents
the k-th wavelet coefficient at scale j, j = 1,...,J, and v(0,k)

represents the k-th scaling coefficients at scale J. Time
series vi  can be constructed as

[ , , , , , , , , , , , , ] 

=  [ , ( , ), ( , ), ( , ), ( ,2), ( , ), ( , ), ( , ),
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Similarly, other wavelet coefficients time series can also be
constructed. Assume $si  is the output estimation of si , and

$si , si , ni  are statistically stationary. For orthogonal

DWT, the risk function is
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where the estimated wavelet coefficients $v  are obtained
using shrinkage of wavelet coefficients u of received
signal, i.e., $( , ) ( ( , ), )v j k u j k tk j= η .

In conventional linear adaptive filtering scheme, the filter
coefficients are selected adaptively toward the optimal
solution. Similarly, in our nonlinear adaptive noise
suppression, we will attempt to select the parameter t in the
nonlinear thresholding function η k x t( , )  adaptively toward

the optimal solution. Note that the scaling coefficients
u(0,k) are normally kept without shrinkage, and t denotes
vector [ , , , ]t t tJ

T
1 2 L  in scale dependent thresholding

scheme.

We develop a neural network structure to implement the
adaptive noise suppression in wavelet domain using
wavelet shrinkage scheme. The adaptive system structure
of the proposed method is shown in Fig. 1. In Fig. 1, ′y  is

the reference signal, and ′u  is the reference wavelet
coefficients series in wavelet domain. The estimation $vi  of

vi  is calculated using nonlinear shrinkage functions. The

error series ε i i iv u= −$  in wavelet domain. The following

adaptive learning algorithm for neural network so that the
risk J(t) in (2) can be minimized by adjusting parameter t
in real-time.
Step 1.  Initialize parameter t t= 0 .

Step 2.  Each time a new sample in wavelet domain ui  and

$vi  is encountered, adjust t  using following scheme,

t t t( ) ( ) ( )i i i+ = −1 ∆ , (3)
where

∆t
t

( ) ( )
$

i i
vi

i= ⋅ ⋅αα ∂
∂

ε , (4)

where αα ( ) [ ( ), ( ), , ( )]i diag i i iJ= α α α1 2 L  is learning rate

matrix of each step and α j i( )  is the learning rate for

parameter tj.



In this way, the risk J(t) can be minimized and the optimal
parameter t* can be obtained adaptively. However, in
practice, the signal time series si  is unknown. Using si  as

reference signal series ′yi  is impractical. In our scheme,

we produce the reference signal ′yi  with the same

transmitted signal time series si  plus noise series ′ni ,

which is statistically uncorrelated with noise series ni , i.e.,

′ = + ′y s ni i i . This is easy to implement by receiving the

signal in another channel.

3.  THE CONVERGENCE PERFORMANCE
OF THE LEARNING ALGORITHM

Similar to the traditional linear adaptive filtering
techniques [1, 2], the analysis of the algorithm will be
based on stationary signals, although our nonlinear
adaptive filtering methods are designed to track
nonstationary random input. This is a usual idealization
used so that the analysis becomes relatively tractable. In
following theorems, the convergence properties of the
adaptive algorithm described in (3) and (4) are given.

Theorem 1 Suppose a random signal time series si  and a

noise time series ni  are statistically stationary and noise

n is a white Gaussian random process with distribution
N( , )0 σ . If η s x t( , )  is used as nonlinear shrinkage

function, then there exists at most one optimal solution t*

which minimize J(t) in (2) and its every component t j
∗ ≥ 0 .

Theorem 2 Suppose there exists optimal t* for J(t).
Assume reference signal is ′ = + ′y s ni i i , where ′n is a white

normal random process which is statistically uncorrelated
with n . Using the wavelet shrinkage based learning
algorithm described in the above section (see (3) and (4))
and ηs x t( , )  as nonlinear shrinkage function, then

lim { ( )}i E i→∞
∗=t t , when αα ( )i  is suitable selected, i.e., the

learning algorithm is convergent in the mean.

The proofs of the above two theorems are in [9].

4. NUMERICAL EXAMPLES

The test signals: Blocks, Bumps, HeaviSine and Doppler,
which were used by most of other wavelet shrinkage
related literature, are shown in Fig. 2. The signal length is
2048 samples. These series are used for adaptive signal
processing, i.e., only the past samples before the current
time of received signals are assumed to be known. Assume
the signal to noise ratio, SNR s n= =σ σ 7 , for all signals

and the reference signals ′ = + ′y s ni i i .  Duabechies 16-tap

wavelet filter is used. For traditional adaptive noise
canceling (ANC) scheme, we take the commonly used

reference noise signal r n n =  + ′  [2]. (Using Weiner filter
theory, it is easy to find that the ideal performance will be
worse if ′y  is used as a reference signal for ANC.) The

16-tap linear filter is chosen for simulation.

In Table 1, the mean square errors (MSE) of different
adaptive methods are given. WANS0 and WANS1
represents the estimated MSE when i = 2048 by wavelet
shrinkage based adaptive noise suppression (WANS),
using standard soft-thresholding function ηs x t( , )  and the

proposed nonlinear function η3( , )x t , respectively. ANC

represents the estimated MSE when i = 2048. SOPT0 and
SOPT1 represent the optimal MSE by numerical method
for scale dependent threshold selection, using ηs x t( , )  and

η3( , )x t , respectively. ANC-OPT represents optimal MSE

by the ideal linear Weiner filter using ANC scheme. In Fig.
3, the dotted line, dashed line and solid line represent the
learning curves of ANC, WANS0 and WANS1 schemes,
respectively.

It is indicated in Table 1 that the optimal solutions of the
new system  (SOPT0, SOPT1) are  much better than ANC
(ANC-OPT). The learning results of the new system
(WANS0, WANS1) are very close to the optimal solutions
while the learning results of ANC are not as close to the
optimal solutions. In Fig. 3, it is also shown that practical
learning performances of the proposed methods are much
better than conventional ANC scheme (based on linear
adaptive filtering technique). It is also clearly shown that
our new shrinkage function (SOPT1 and WANS1)
outperforms the standard shrinkage function in both
optimal solutions and learning performance. Further
numerical results show the similar performance.

5. CONCLUSION

In this paper, a new type of nonlinear adaptive system for
adaptive noise suppression based on wavelet shrinkage
scheme and a new class of nonlinear shrinkage functions
were presented. A new type of wavelet shrinkage based
neural network and its adaptive learning algorithm are
developed to construct the adaptive system for noise
suppression. The theoretical analysis results of
convergence properties for the learning algorithm are
presented. The numerical results show that the proposed
methods perform much better than conventional linear
filter based method for a wide range of signals. The further
development based on the similar idea but different risk
functions, such as SURE risk, etc., have also been
investigated in [9]. Both theoretical analysis and numerical
results show that this new type of adaptive system is very
effective for adaptive processing related applications.



6. REFERENCES

[1] S. Haykin, Adaptive Filter Theory, Prentice-Hall
Information and System Science Series. Prentice-Hall,
Englewood Cliffs, New Jersey, 1986.

[2] B. Widrow and S. D. Stearns, Adaptive Signal
Processing, Prentice-Hall Signal Processing Series.
Prentice-Hall, Englewood  Cliffs, New Jersey, 1985.

[3] S. Hosur and A. H. Tewfik, “Wavelet transform
domain adaptive fir filtering,” IEEE Trans. on Signal
Processing, vol. 45, no. 3, pp. 617--630,  Mar. 1997.

[4] N. Erdol and F. Basbug, “Wavelet transform based
adaptive filters: analysis and new  results,” IEEE
Trans. on Signal Processing, vol. 44, no. 9, pp. 2163--
2171, Sept. 1997.

[5] D. L. Donoho, “De-noising by soft-thresholding,”
IEEE Trans. Inform. Theory, vol. 41, no. 3, pp. 613--
627, May  1995.

[6] D. L. Donoho and I. M. Johnstone, “Adapting to
unknown smoothness via wavelet shrinkage,” J. Am.
Stat. Ass., vol. 90, no. 432, pp. 1200--1224, 1995.

[7] O. Rioul and P. Duhamel, “Fast algorithms for
discrete and continuous wavelet transforms”, IEEE
Trans. on Info. Theo., vol. 38, no. 2, Mar. 1992.

[8] G. Strang and T. Nguyen, Wavelets and Filter Banks,
Wellesley-Cambridge Press, Wellesley, 1996.

[9] X.-P. Zhang and M. Desai, “Wavelet shrinkage based
adaptive noise suppression using neural  network,” to
be submitted.

DWT+

u i( , )0

u i( , )1

u i( , )2

u J i( , )

M

ηk t( )1

ηk t( )2

ηk Jt( )

$( , )v i1

$( , )v i1

$( , )v i1

$( , )v i0

IDWT

ui
$vi

$si

ΣDWT+ - +
′ui

si

ni

′ni

Reference
Signal

Channel Noise

Channel Noise

′yi

Recieved
Signal

yi

Signal
Source

Output
Signal

Neural Network

ε i

Fig. 1 The adaptive system for noise suppression
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Fig. 2. Four test signals          Fig. 3. Learning curves of different adaptive methods

Blocks Bumps HeaviSine Doppler
Original 1.0000 1.0000 1.0000 1.0000
WANS0 0.2548 0.2877 0.1309 0.1666
WANS1 0.2429 0.2812 0.1063 0.1427
ANC 0.5535 0.7382 0.7883 0.7313
SOPT0 0.2306 0.2768 0.0690 0.1158
SOPT1 0.2305 0.2763 0.0616 0.1157
ANC-OPT 0.5 0.5 0.5 0.5

Table 1: MSEs of difference adaptive method


