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ABSTRACT

The problem of blind equalization of SIMO (single-input
multiple-output) communications channels is considered us-
ing only the second-order statistics of the data. Such mod-
els arise when a single receiver data is fractionally sampled
(assuming that there is excess bandwidth), or when an an-
tenna array is used with or without fractional sampling.
We focus on direct design of �nite-length MMSE (mini-
mum mean-square error) blind equalizers. Unlike the past
work on this problem, we allow in�nite impulse response
(IIR) channels. Our approaches also work when the \sub-
channel" transfer functions have common zeros so long as
the common zeros are minimum-phase zeros. Illustrative
simulation examples are provided.

1. INTRODUCTION

Consider a discrete-time SIMO system with N outputs and
one input. The i-th component of the output at time k is
given by

yi(k) = Fi(z)w(k) + ni(k) ; i = 1; 2; � � � ;N; (1 � 1)

=) y(k) = F(z)w(k) + n(k) = s(k) + n(k); (1 � 2)

where y(k) = [y1(k)
... y2(k)

... � � �
...yN (k)]

T , similarly for s(k)
and n(k), and z is the Z�transform variable as well as the
backward-shift operator (i.e., z�1w(k) = w(k � 1), etc.).
The sequence w(k) is the (single) input at sampling time
k, yi(k) is the i-th noisy output, si(k) is the i-th noise-free
output, ni(k) is the additive measurement noise,

F(z) :=

1X
l=0

Flz
�l (1� 3)

and Fi(z) =
P

1

l=0
fi(l)z

�l is the scalar transfer function
with w(k) as the input and yi(k) as the output; it represents
the i�th subchannel. We allow all of the above variables
to be complex-valued.
Such models arise in several useful baseband-equivalent

digital communications and other applications. A case of
some interest is that of fractionally-spaced samples of a
single baseband received signal leading to a SIMO model
[1],[4],[8]. Alternatively, a similar model can be derived
when we have a single signal impinging upon an antenna
array with N elements [5]. A similar model arises if we have
an antenna array coupled with fractional sampling at each
array-element [5]. In these applications one of the objectives
is to recover the inputs w(k) given the noisy measurements
but not given the knowledge of the system transfer function.
An overwhelming number of papers (see [4],[5],[9]-[12] and
references therein) have concentrated on a two-step proce-
dure: �rst estimate the channel impulse response (IR) and
then design an equalizer using the estimated channel. A
fundamental restriction in these works is that the channel
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is FIR with no common zeros among the various subchan-
nels. A few (see [1]and [13], e.g.) have proposed direct
design of the equalizer bypassing channel estimation. Still
they assume FIR channels with no common zeros.
In this paper we allow IIR channels. We will also al-

low common zeros so long as they are minimum-phase. Fi-
nally, in the presence of nonminimum-phase common zeros,
our proposed approach equalizes the spectrally-equivalent
minimum-phase counterpart of F(z); it does not \fall
apart" unlike quite a few existing approaches. We should
note that our proposed approach is inspired by [1]. Unlike
[1] our approach applies to antenna arrays since we do not
require that f1(0) 6= 0 but fi(0) = 0 for i = 2; 3; � � � ;N (as
in [1]).

2. PRELIMINARIES

2.1. FIR Inverses
Let F(z) = A�1(z)B(z) where A(z) = 1 +

Pna

i=1
aiz

�i is

1� 1 and B(z) =
Pnb

i=0
Biz

�i is N � 1. Assume

(H1) N > 1.
(H2) RankfB(z)g = 1 8z including z =1 but excluding

z = 0, i.e., B(z) is irreducible [7, Sec. 6.3].
(H3) A(z) 6= 0 for jzj � 1.

It has been shown in [6] (using some results from [2]) that
under (H1)-(H3) there exists a �nite degree left-inverse
(not necessarily unique) of F(z):

G(z)F(z) = 1 (2� 1)

where G(z) is 1�N given by

G(z) =

LeX
l=0

Glz
�l for any Le � na + nb � 1: (2� 2)

Remark 1: The left-inverse G(z) of F(z) consists of
two parts: G(z) = GB(z)A(z) where GB(z)B(z) = 1 so
that G(z)F(z) = GB(z)A(z)A

�1(z)B(z) = GB(z)B(z) =1.
Finite length left-inverses of FIR SIMO channels have been
subject of intense research activities [4]-[6],[8]-[13].

2.2. Linear Innovations Representations
Assume further the following:

(H4) fw(k)g is zero-mean, white. Take Efjw(k)j2g = 1.

Lemma 1. Under (H1)-(H4), fs(k)g may be represented
as

s(k) = �

MX
i=1

Dis(k � i) + Is(k) (2� 3)

where M = na+nb�1, Di's are some N�N matrices such

that det(D(z)) 6= 0 for jzj � 1, D(z) = I +
PM

i=1
Diz

�i

and fIs(k)g is a zero-mean white N � 1 random sequence
(linear innovations for fs(k)g) with

EfIs(k)I
H

s (k)g = F0F
H

0 and kF0k
�2FH0 Is(k) = w(k):

(2� 4)



Proof: Consider the process

s0(k) := A(z)s(k) = B(z)w(k): (2 � 5)

By [9] and [14], under (H1), (H2) and (H4), we have

s0(k) = �

nb�1X
i=1

D0

is
0(k � i) + I 0s(k) (2� 6)

where D0

is are some N�N matrices such that det(D0(z)) 6=

0 for jzj � 1, D0(z) = I+
PM

i=1
D0

iz
�i and fI 0s(k)g is a zero-

mean white N � 1 random sequence with

EfI 0s(k)I
0H

s (k)g = F0F
H

0 and kF0k
�2FH0 I

0

s(k) = w(k):
(2� 7)

Since s(k) = A�1(z)s0(k), it follows from (2-6) that (2-3)
holds true with Is(k) � I 0s(k) such that D(z) = A(z)D0(z).
This completes the proof. 2

Lemma 2. Let RssLe denote a [N(Le + 1)]� [N(Le + 1)]
matrix with its ij-th block element as Rss(j� i) = Efs(k+
j� i)sH(k)g. Then under (H1)-(H4), �(RssLe) � NLe+1
for Le � na+nb� 1 where �(A) denotes the rank of A. �
Sketch of proof: It follows from Lemma 1 and (2-3) that

[ I D1 � � � Dna+nb�1 0 � � � 0 ]RssLe

=
�
F0F

H
0 0 � � � 0

�
: (2� 8)

Apply Sylvester's inequality [7, p. 655] to (2-8) to deduce
the desired result. 2

3. BLIND EQUALIZATION: NO COMMON
ZEROS

Assume that (H1)-(H4) hold true. In addition assume the
following regarding the measurement noise:

(H5) fn(k)g is zero-mean with Efn(k + �)nH(k)g =
�2nIN�N where IN�N is the N � N identity ma-
trix.

3.1. Zero-Delay Zero-Forcing Equalizer
Using (1-3), (2-1) and (2-2), we have

1X
l=0

Gm�lFl =
n

1; m = 0
0; m = 1; 2; � � � ; (3� 1)

leading to

[ G0 G1 � � � GLe ]S = [ 1 0 � � � � � � ]
(3� 2)

where S is the (N(Le + 1))�1 matrix given by

S =

2
64
F0 F1 F2 F3 � � � � � � � � �
0 F0 F1 F2 � � � � � � � � �
...

...
...

...
0 0 � � � 0 F0 F1 � � �

3
75 : (3� 3)

Let S
#

denote the pseudoinverse of S. By [15, Prop. 1],

S
#

= S
H

(S S
H

)#. Then the minimum norm solution to
the FIR equalizer is given by [15, Sec. 6.11]

[ G0 G1 � � � GLe ] =
�
FH0 0 � � � 0

�
(S S

H

)#:
(3� 4)

In a fashion similar to RssLe in Lemma 2, let RyyLe

denote a [N(Le + 1)] � [N(Le + 1)] matrix with its ij-th

block element as Ryy(j� i) = Efy(k+ j� i)yH(k)g; de�ne
similarly RnnLe pertaining to the additive noise. Carry out
an eigendecomposition of RyyLe. Then the smallest N � 1
eigenvalues of RyyLe equal �2n because under (H1)-(H4),
�(RssLe) � NLe + 1 whereas �(RnnLe) = NLe + N =
�(RyyLe). Thus a consistent estimate b�2n of �2n is obtained
by taking it as the average of the smallest N�1 eigenvalues

of bRyyLe, the data-based consistent estimate of RyyLe.
Under (H4) and (H5),

(S S
H

) = RssLe = RyyLe �RnnLe = RyyLe � �2nI:
(3� 5)

Thus, (S S
H

) can be estimated from noisy data. However,
we don't know F0. To this end, we seek an N � N FIR

�lter Ga(z) :=
PLe

i=0
Gaiz

�i satisfying

[ Ga0 Ga1 � � � GaLe ] = [ IN�N 0 � � � 0 ]R#

ssLe
:

(3� 6)
Comparing (3-4) and (3-6) it follows that

[ G0 G1 � � � GLe ] = FH0 [ Ga0 Ga1 � � � GaLe ]
(3� 7)

leading to

LeX
i=0

Giz
�i =: G(z) = FH0 Ga(z): (3� 8)

In practice, therefore, we apply Ga(z) to the data leading
to

v(k) := Ga(z)y(k) = vs(k) + Ga(z)n(k) (3� 9)

such that
FH0 vs(k) = w(k) (3� 10)

where

vs(k) := Ga(z) [y(k)� n(k)] = Ga(z)s(k): (3� 11)

In (3-10) fw(k)g is a white scalar sequence (by as-
sumption (H4)), however, fvs(k)g is not necessarily a
white vector sequence. Given the second-order statistics
of fvs(k)g, how does one estimate F0 so that fw(k)g sat-
isfying (H4) is recovered? We need to have Rww(�) :=
Efw(k + �)w�(k)g = 0 for j� j 6= 0. By (3-9), Rww(�) =
FH0 Rvsvs(�)F0. De�ne (L > 0 is some large integer)

Rvsvs :=
�
RT
vsvs(�1) RT

vsvs(�2) � � � RT
vsvs(�L)

�T
(3� 12)

where Rvsvs(�) := Efvs(k+ �)vHs (k)g.
Lemma 3. Rvsvs is rank de�cient for any L � 1 such
that RvsvsF0 = 0. �
Proof: We have

Rwvs(�) = Efw(k+ �)vHs (k)g = 0 8� � 1 (3� 13)

because vs(k) is obtained by causal �ltering of y(k), hence
of w(k). Using (3-10) in (3-13) it then follows that there
exists a N � 1 F0 6= 0 such that FH0 Rvsvs(�) = 0 8� � 1.
Equivalently (since Rvsvs(��) = RHvsvs(�))

Rvsvs(��)F0 = 0 8� � 1: (3� 14)

The desired result is then immediate. 2

Pick a N � 1 column-vector H0 to equal the right-
most right singular vector in a singular-value decomposition



(SVD) Rvsvs = U�V H, i.e. the right singular vector cor-
responding to the smallest singular value. In other words,
pick H0 to equal the last column of V . Then since ide-
ally the smallest singular value of Rvsvs is zero, we have
HH

0 Rvsvs(�)H0 = 0 for � = 1; 2; � � � ; L. Since the over-
all system with w(k) as input and HH

0 vs(k) as output is
ARMA(na; nb + Le), it follows that H

H
0 vs(k) is zero-mean

white if L � nb+Le, hence, a scaled version of w(k). There-
fore, we have (� 6= 0)

HH

0 vs(k) =: w0(k) = �w(k) (3� 15)

(because RvsvsH0 = 0). Thus, once H0 is found, one has
the complete inverse �lter to recover a scaled version of
w(k) via a zero-forcing �lter.
Remark 2: F0 can also be estimated (up to a scale

factor as unit norm H0) using the prediction error method
of [9],[14] (even though [9] and [14] restrict their discussion
to FIR models and real-valued data). Using (2-3) we obtain
(Le � na + nb � 1)

[ D1 � � � DLe ]RssLe = � [ Rss(1) � � � Rss(Le) ]
(3� 16)

leading to the minimum norm solution

[ D1 � � � DLe ] = � [ Rss(1) � � � Rss(Le) ]R#

ssLe
:

(3� 17)
Note that if Le > na + nb � 1, then Di = 0 for all i >
na + nb � 1 by Lemma 2. By (2-3){(2-4) we have

RII(0) = F0F
H

0 = Rss(0) +

LeX
i=1

DiRss(�i): (3� 18)

Clearly �(Rss(0)) = 1. Carry out an eigendecomposition
of RII(0). Pick H0 as the unit norm eigenvector corre-
sponding to the largest eigenvalue (ideally the only nonzero
eigenvalue) of RII(0). 2

Remark 3: It is worth noting that although FH0 vs(k) =
w(k) (see (3-10)) and kF0k

�2FH0 Is(k) = w(k) (see (2-4)),
fIs(k)g is zero-mean white (linear innovations) whereas
fvs(k)g is in general colored. 2

3.2. MMSE Equalizer with Delay d
We wish to design an MMSE linear equalizer of a speci�ed
length. Using the orthogonality principle [16], the MMSE
equalizer of length Le+1 to estimate w(k�d) (d � 0) based
upon y(n); n = k; k � 1; � � � ; k � Le, satis�es�

Gd;0 Gd;1 � � � Gd;Le

�
=

�
FHd FHd�1 � � � FH0 0 � � � 0

�
R�1yyLe (3� 19)

where RyyLe has its ij�th block-element given by Ryy(j�
i). Clearly one can obtain a consistent estimate of RyyLe

from the given data. It remains to estimate Fl's to complete
the design. Here the discussion of Sec. 3.1 becomes relevant.
There we found a H0 to satisfy (3-15). From (3-9) and (3-
15) we have

HH

0 vs(k) =

LeX
i=0

HH

0 Gais(n � i): (3� 20)

Using (1-2), (3-15) and (3-20), we have

FH� = ��1HH

0

LeX
i=0

GaiR
H

ss(� + i): (3� 21)

Let Rd;ssLe denote a [N(Le+1)]� [N(Le+1)] matrix with
its ij-th block element as Efs(k + d+ j � i)sH(k)g. Using
(3-6) and (3-21) in (3-19) we obtain the desired solution�

Gd;0 Gd;1 � � � Gd;Le

�
= ��1HH

0 [ IN�N 0 � � � 0 ]R#

ssLe
RHd;ssLeR

�1
yyLe

:

(3� 22)
A scaled MMSE estimate of w(t� d) is then given by

bw(t� d) =

LeX
i=0

�Gd;iy(t� i): (3� 23)

3.3. Summary of Algorithms
Given data y(k); k = 1; 2; � � � ; T . Pick the length Le + 1
and delay d of the MMSE equalizer. Estimate all correlation
functions by sample averaging.

3.3.1. ALGORITHM I :

Here F0 is estimated as the unit norm H0 that lies in
the null space of Rvsvs . Estimate noisefree correlations via
(3-5). Use (3-22) and (3-23) for MMSE equalizer design.

3.3.2. ALGORITHM II :

Here F0 is estimated as in Remark 2. The rest is as in
ALGORITHM I.

3.3.3. ALGORITHM III :

Here we will use (3-19) with Fi (i = 0; 1; � � � ; d) estimated
using the basic approach of [9] and [14]. Although [9] and
[14] derive all their results under the assumption of FIR
channels with no common zeros, their results extend (with
straightforward modi�cations) to models that satisfy (H1)-
(H5) by virtue of Lemma 1.

4. BLIND EQUALIZATION: COMMON ZEROS

4.1. Minimum-Phase Zeros
Here the SIMO transfer function is

F(z) = [Bc(z)=A(z)]B(z) (4� 1)

where B(z) satis�es (H2) and Bc(z) is a �nite-degree scalar
polynomial that collects all the common zeros of the sub-
channels. Assume that

(H6) Given model (4-1), Bc(z) 6= 0 for jzj � 1.

Then while A�1(z)B(z) has a �nite inverse, B�1c (z) is IIR
though causal under (H6). Then (3-2) holds true approx-
imately for \large" Le, the approximation getting better
with increasing Le. Similarly Lemma 1 holds true approx-
imately for \large" M and Lemma 2 also holds true ap-
proximately for Le � M . It is then readily seen that the
developments of Secs. 3.1, 3.2 and 3.3 are applicable.

4.2. Arbitrary Zeros
In this case (4-1) is true but Bc(z) does not necessarily
satisfy (H6). We may rewrite (4-1) as

F(z) = F(z)FAP (z) (4� 2)

where FAP (z) is an allpass (rational) function such that

Bc(z)Bc(z
�1) = FAP (z)BMP (z) (4� 3)

and BMP (z) is minimum-phase. Thus (within a scale fac-
tor) we have

F(z) =
�
BMP (z)=A(z)

�
B(z): (4� 4)



We may rewrite (1-2) as

y(k) = F(z)w0(k) + n(k) where w0(k) := FAP (z)w(k):
(4� 5)

Clearly w0(k) satis�es (H4). Hence, (4-4)-(4-5) satisfy
the requirements of Sec. 4.1. Therefore, one can \ap-
proximately" recover w0(k) from the given data by ap-
plying the algorithms of Sec. 3.3. In order to recover
w(k) form w0(k), one needs to exploit the higher-order
statistics of fw0(k)g; see [2],[3] and references therein.
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Fig. 1. Normalized MSE after MMSE equalization with
d = 3. Solid lines: T = 250 symbols, dashed lines: T =
1000 symbols.

5. SIMULATION EXAMPLES

5.1. Example 1.

We have N = 3 in (1-2) with F(z) = A�1(z)B(z) where

A(z) = (1� 0:5z�1)I3�3 (5� 1)

and B(z) is 3�1 MA(6) obtained from [10] as follows. Con-
sider a raised cosine pulse p6(t; 0:1) with a roll-o� factor 0.1,
truncated to a length of 6Ts (Ts = symbol duration). As in
[10], a two-ray multipath channel with (e�ective) impulse
response h(t) = p6(t; 0:1)�0:7p6(t�Ts=3; 0:1) was sampled
at intervals of Ts=3 (starting at t = �3Ts) to create the B(z)
above. Transfer function B(z) satis�es (H2) [10], therefore,
there exists a �nite left inverse of length Le = 6 (cf. Sec.
2.1). The scalar input w(k) is 4-QAM. An MMSE equalizer
of length Le = 8 (9 taps per subchannel, totaling 27 taps
�� over�tting) was designed with a delay d =3 (arbitrarily
selected just for illustration). The Algorithms I{III were
applied for record lengths T = 250 and 1000 symbols with
varying SNR's. Fig. 1 shows the normalized MSE (MSE
divided by Efjw(k)j2g). It is seen that the proposed de-
sign approach can handle IIR channels with little di�culty.
Algorithm I (newly proposed) performs the best.

5.2. Example 2.

Again we have N = 3 in (1-2) but with F(z) = Bc(z)B(z)
where B(z) is as in Example 1 and Bc(z) is a scalar poly-
nomial given by

Bc(z) = 1 � 0:5z�1: (5� 2)

Thus all three subchannels have a common zero at 0.5.
The input w(k) is 4-QAM as in Example 1. Note that
in this example a �nite left inverse does not exist. As in
Example 1, an MMSE equalizer of length Le = 12 was

designed with a delay d =3. Fig. 2 shows the normal-
ized MSE averaged over 100 Monte Carlo runs. It is seen
that the proposed design approaches can handle subchan-
nels with common minimum-phase zeros with little di�-
culty. As in Example 1, Algorithm I performs the best.
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Fig. 2. Normalized MSE after MMSE equalization with
d = 3. Solid lines: T = 250 symbols, dashed lines: T =
1000 symbols.
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