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ABSTRACT angle at which the return signal arrives may be unknown. More-

over, changing target and environmental characteristics, combined

Quadratic time-frequency representations (TFRs) and time-scale i, gther types of disturbances, cause the signals that arrive at the

representations (TSRs) have been shown to be very useful for de'array to be regarded as random, and at times the physical phenom-

tecting nonstationary signals in t_he presence of n_onstationary n.Oiseena responsible for the randomness in the signal make it plausible
The theory developed thus far is only for the single observation 1 4¢5me that the signals are Gaussian (perhaps nonstationary)
case; however, in many situations involving signal detection, there random processes. Though the signal structure is known, it may

are advantages in using an array c_)f receiving Sensors. Sensor aig containunknown parameters such as a delay, frequency shift,
rays allow for target or source localization and can provide a large go1e offset, or angle of arrival. These uncertainties, combined
gain in the SNR. We show that time-frequency and time-scale \\ii, the nonstationary nature of the signal and noise processes,

representations provide a natural structure for the detection of 3make TERs and TSRS potentially powerful tools in designing the
large class of nonstationary signals in the presence of nonstation, ima detector in the array environment. Traditional array pro-
ary noise using an array of sensors. That is, time-frequency and

i | id d . hat is both imal and cessing schemes assume that the signal and noise processes are
ime-scale provide a detection structure that is both optimal and gationary and the use of TFRs/TSRs in array processing has been
allows for efficient implementation. In developing the TFR/TSR-

) . , limited to simple, generally suboptimal, matched-field beamform-
based optimal quadratic array processor, we consider several type

; : . \ _ thg techniques.
of array environments including those with full, partial, and no In this paper we consider the problem of detecting arbitrary
coherence.

nonstationary second-order signalith unknown time and fre-

quency or time and scale offsets arriving in a linear array with an
1. INTRODUCTION unknown angle of arrival. We explity show how the optimal

detector for such a problem can be implemented naturally and ef-
The detection of signals in noise is a classical hypothesis testingficiently in the time-frequency or time-scale domain. This paper is
problem. In many situations, the signal may include unknown time organized as follows: Section 2 briefly reviews TFRs and TSRs,
and frequency or time and scale offsets. Such situations include thefollowed by a discussion of the detection problem that we con-
well known delay-doppler situation in radar/sonar detection prob- sider in Section 3. In Section 4, quadratic detection in a partially
lems. Time-frequency representations (TFRs) and time-scale rep-coherent linear array is explored. In Section 5, the array detection
resentations (TSRs), which describe the signal jointly in terms of problem will be shown to be naturally suited to time-frequency
both time and frequency or time and scale, are powerful tools for or time-scale representations whereby we develop the TFR/TSR-
designing the optimal detector in such situations. Recently it has based optimal quadratic array processors. The model of partial
been shown that the optimal quadratic detector for the detection ofcoherence used includes as special cases the coherent and non-
nonstationary Gaussian signals with unknown time and frequencycoherent environments, for which the optimal detector simplifies
or time and scale offsets in the presence of noise can be imple-considerably. In Section 6 we present an example illustrating the
mented naturally within Cohen’s class of TFRs or TSRs [1]. In benefits of the TFR-based quadratic array processor and in Section
this paper, we will extend this idea to detection using an array of 7 we conclude the paper.

sensors.
In many situations involving signal detection and estimation, 2. TIME-FREQUENCY AND TIME-SCALE
there are many advantages in using a sensor array instead of a sin- REPRESENTATIONS

gle element, directionality and SNR gain are the most important.

In active sensing situations such as radar and sonar, a known waveTFRs have become increasingly popular tools for analyzing and
form is generated which in turn propagates through a medium andprocessing signals with time-varying spectral content. A one di-
is reflected by some target back to the array. That transmitted sig-mensional signat(t) is mapped by a TFR into a two-dimensional
nal undergoes a delay and frequency shift in the narrowband casejistribution, P. (¢, f), which is a function of both time and fre-
and a delay and scale offset in the wideband case. In addition, thequency. This joint representation exploits the nonstationary char-

This work was supported by the Office of Naval Research,contractno.  'Second-order signals are those which are completely characterized by
N00014-95-1-0674 their second-order statistics; Gaussian signals are an example.



acteristics of a signal and therefore can be very useful in detectingfor some correlation functio®.. In the case of time and scale
nonstationary signals. Similarly, a TSR analyzes a signal jointly in offsets,
terms of time and scale. -

Any bilinear TFR from Cohen’s class can be expressed as [3] RU (11, t2) = cR(c(ty — 7),c(ts — 7)) 7

again for some correlation functid®.. Note that (6) corresponds
to s(t;7,v) = $(ru) (t — 7)e’>™" in (5), where, for eackr, v),
s(r,) IS any second-order signal with correlation functién.
Similarly, (7) is equivalent tos(t;7,¢) = /cs(r.) (c(t — 7))

Pu(t, f;®) = //Wm(u,v)q)(u —t,v — f)dudv @)

wherelV, is the auto-Wigner distribution (WD) of, defined as

[3] for any second-order signaj.,, with correlation functionrz..
. janfr 5 We will consider the parametets, «) to be deterministic but un-
Walt, f) = /x(t‘”/z)x (t=7/2)e dr, (4, f) € R7, known. In statistical hypothesis testing, for each observaiipa,
2) real-valued test statistid,(z), is compared to a threshold to de-

and® is a two-dimensional kernel that completely characterizes cide in favor ofHy or H,; that is, to decide whether the signal

the TFRP, (¢, f; ®). Similarly, any bilinear TSR from the affine IS present or not. We assume that both the signal and the noise

class can be expressed as processes are independent of each other and are completely char-
acterized by their correlation functions.

Co(t,a; 1) = //VVE(U7 V)II((u — t)/a,av)dudv, (3)

where(t,a) € R x (0,c0) and again the kerndl completely _ ] i _ _
characterizes the TSR, (t, a; IT). Cross-TFR¥,,(t, f; ®) and In the linear array conflguratlon, the signal comes in to the array
cross-TSRe,, (¢, a; IT) will prove to be useful tools when mul-  0f M sensors with spacingat anglef, whered is assumed to be
tiple signals are being processed. In this case, the auto-WD isunknOWn. Figure lllustrates the linear array configuration. We
replaced with a cross-WD defined as

4. QUADRATIC DETECTION IN A LINEAR ARRAY

X(t) = s(t;T,0) + n(t) x1(t)

* —J2mfr o—
Way(t, f) = /x(t—l—T/Z)y (t—7/2)e s2rf dr, (t,f) € R?. >\ x0
_ LN o—|
(4) d I Quadratic Array Lopt
o— Processor =

3. THE DETECTION PROBLEM

Consider the following composite hypothesis testing problem in
continuous time:

Ho:z(t) = n(t)

Figure 1: Linear Array Configuration

Hi:a(t) = s7%() +n(t) ®) will denote the signal at théith sensor by:;(¢). Due to the linear
wheret € T, the time interval of observation, is the observed ~ array cqnfiguration,_the signal at tkth sensor is a delayed version
signal,» is arbitrary zero-mean complex Gaussian noise with cor- of the signal at the first sensor, and the_ value of the delay depends
relation functionR,,(t1,t:) = E[n(ti)n*(t>)], ands is a zero-  ON the unknown angle of arrival, Thatis,x;(t) = 1 (t — D),
mean complex arbitrary second-order signal with correlation func- WhereD = £sin(¢) andc is the velocity of propagation in the
tion R.(t1,t,). The parametergr, a) represent certain nuisance Medium. Note that(t) = s(t — ¢D) + n(t) when the signal

parameters that are assumed to be unknown. The parameger IS Presentand;(t) = n(t) when only noise is present. A useful
resents a time shift and the parameterepresents either a scale quantity in the derivation of the optimal detector will be the array

offset ¢) or frequency shifti) >. TFRs and TSRs provide a nat- _cro_ss-correlation matrix, den_oted E’y\_/vhere the(z, j)th element

ural detection framework for such hypothesis testing problems for IS given by the cross-correlation function betweeft) and; (t);

two main reasons: first, detecting a second-order signal (such aghatis, .

a Gaussian signal) in the presence of Gaussian noise involves a Pij = Blai(t)aj(t2)] = Raya;(t, t2) ®)
quadratic function of the observations [4], and bilinear TFRs and Let P denote the array cross-correlation matrix when the signal
TSRs are quadratic in the observations; second, TFRs and TSRalone is present, and &, denote the array cross-correlation ma-
posses additional degrees of freedom provided by the TFR andtrix when the noise alone is present. It is customary to assume that
TSR parameters (time and frequency for Cohen'’s class and timethe noise between sensors is uncorrelated , which impliePthat

and scale for the affine class). is diagonal and given bP,, = diag(Ry, Rn, ... Rn).

Because of our assumptions, the dependeng®of(, «) is A concern arises when considering the use of a very large
only through the correlation function, which we denote[fl{)(sy’a)_ array in order to achieve high array gain; the signal received at
In the case of time and frequency shifts, widely separated sensors may have reduced coherence due to the

_ complexity in the propagation of the signal from the source to
RUY (t1,t2) = Ra(ts — 7,2 — 7)> ™1 ™7™52 (6 spatially separated receivers [2]. Since we are only considering

2 Actually, we can start by arbitrarily parameterizing the composite hy- the second-orde_r statlst_lcs o_f the signal, the model f_or partla_l co-
pothesisH 1, but from [1] we know time-frequency and time-scale detec- herence used will be given in terms of the correlation function.

tors are naturally suited to deal with time and frequency shifts or time and An exponential power law model [2] will be used whereby the
scale offsets. cross-correlation function between thk andjth sensors will be



scaled by the coefficient; = e‘llf_]l , wherel is a dimension- We use the superscrifithere to denote the fact that the TFR must
less characteristic correlation length. We may arrange the decor-be formed for each hypothesized angle of arrival. Wherorre-
relation coefficients in matrix form a€ = {c;;}. Proceeding  spondsto a scale offsetthe optimal test statistic is given by
with the formulation of the optimal detector, for purposes of sim-
plification, it will be convenient to deal with the aligned sensor
outputs; that is, let;(t) = xi(¢ + ¢D). It will also be con- Lope = max ZZC’J i ( H WSp-1p - 1).
venient to arrange the aligned sensor outputs in vector form as (he0) 3 j=1
Y? = [ (t) a(t) ... ya(t)]T where the superscriptdenotes (14)
the dependence of aligning the sensor signals on the unknown anObserve that in (13) and (14) we must form the sum of all weighted
gle of arrival. cross-TFRs/TSRs; we will refer to this quantity as a matrix TFR
With the assumed decorrelation structure, the array cross- cor-0r TSR. Figure 2a illustrates the partially coherent detection struc-
relation matrix when the signal alone is present, as applied to theture. Because the detector involves forming TFRs or TSRs of sig-
aligned sensor outputs, is given by the following Kronecker prod- nals that are aligned to examine different spatial directions, we
uct: may think of this detection structure in terms of time-frequency-
pime) (t,t2)=C® R (t,t2) 9) space or time-scale-space. Since we have not assumed any spatial
statistical characteristics of the signal, the kernel is the same re-
where R(™® (t1,t2) is the autocorrelation function of the signal gardless of the angle of arrival being analyzed.
component at a particular value of time shifland scale or fre- If the array environment is perfectly coherent, then we have
quency offsetr. Since the parameters «, and¢ are unknown,  thatc,; = 1Vi, 5. Using fundamental properties oflibear TFRs
we use the analogue of a generalized likelihood ratio test (GLRT) and TSRs, it can be verified that the optimal test statistic will in-
[4] in which an estimate of the parameters is formed and used toyolve first summing the sensor observations and then applying the
obtain the optimal test statistic. The optimal test statistic based ONTFR/TSR (with the kernel as before) for each hypothesized angle
the deflectioh criterion [4] is given by of arrival and choosing the maximum value. If the array envi-
5 5 0 <o ronment is noncoherent, théd = I and it can be verified that
Lopt = (1313)9()(P;1 (CoR)PY? YY), (10) the optimal test statistic will include first taking the TFR/TSR of
” each sensor observation (again, with kernel as before), and then

whereR.. denotes the linear operator defined by the correspondingSUmming the resulting TFRs/TSRs feach hypothesized angle

correlation function?. as of arrival and choosing the maximum value. Figure 2b and fig-
) ure 2c illustrate the coherent andncoherent detection structures,
respectively.
(Rex)(t) = /Rs(t7 T)z(7)dT, (11)
andP,, is a matrix of linear operators corresponding the corre- 4O r ________________ j|
lation functions in the matrixP,; observe thalP,, is diagonal ) mﬁ 1 — |
and given byP,, = diag(R,, Rn,...R,) whereR,, is the lin- 2._L Aig® || marx ] || max :Lopt
ear operator corresponding to the correlation function of the noise o TRRITSR—] D “e® =
process. Upon expanding the inner product in (10), we obtain o " : — :
LA 1 | |
L |
(r,a) p—1,06
Lopr = max, ZZCU RRUIRI ! (1), 95 (1)), (12) T @ _________ .
i=1 j=1 : L :
M I Lopt
o || max
5. TFR/TSR-BASED ARRAY DETECTION M 2
10 L |
The connection to TFRs and TSRs is made through the use of the o . |
Weyl correspondence which relates inner products, positive defi- b - :
nite linear operators, and the Wigner distribution. Using the fact L ()
that the Weyl correspondence involves a covariance to time, fre- O

|
|
quency, and scale offsets, using the methods in [1] it can be veri- ) (; . L
fied that the test statistic in (12) may conveniently be expressed in Z'T:_ g s '
.l
t)
o—
!

terms of TFRs or TSRs, allowing for a natural and efficient imple- \
mentation of the optimal detector. In the case wheoerresponds W e s !
to a frequency shift, the optimal test statistic is given by '

Pt Z Zc” v (0 3@ =W Spoa g po)- Figure 2: TFR/TSR-Based Optimal Quadratic Array Processors:
=1 =1 (13) (a) Partially Coherent Detector (b) Coherent Detector (¢) Non-
Coherent Detector

3 Deflection-optimal detectors can be interpreted as “maximum SNR”
detectors because deflection is a measure of SNR.



6. SIMULATION

1

In this section we present an example illustrating the performance *[ ..
of the proposed optimal quadratic array processor. Let us suppose * ;"
that the signal of interest is characterized by the following random '
process:

|— PARTIALLY COHERENT
— - COHERENT
~ NONCOHERENT

— SIX-SENSOR TF
- ~ SINGLE-SENSOR TF
- MATCHED FILTER

PROBABILITY OF DETECTION

PROBABILITY OF DETECTION

3
S(t) =" Zre ", (15)
k=1

whereZ, ~ AN(0,1) and eachs;. is a fixed complex number.
Note thatS(¢) is the sum of three chirp signélaith random am-
plitude scaling factoZ . ; each of the chirps is characterized By s
whose real part determines the variance of the Gaussian envelope
and imaginary part determines the chirp rate. @) (b)
Letus firstillustrate the advantages of the TFR-based array de-
tector over a traditional approach. Unknown time and frequency
shifts as well as an unknown angle of arrival were introduced, and
independent white Gaussian noise was added at each sensor su
that the SNR was 0 dB (that iR, = ¢I). In radar/sonar signal
processing, the traditional approach in detecting the presence o
a signal with unknown time and frequency offsets is to compute

the cross-ambiguity function (point-by-point matchedfilter) of the - 5 i /5 into the array was assumed to be unknown. The deflection

transmltyed andaceived signal and use the maximum value. F'_g' criterion we employed applied to arbitrary second-order signals in
ure 3a displays the ROC curves for the single sensor matched fllterGaussian noise.

and TFR-based detectors. Observe how the TFR-based detector By using a GLRT approach, the deflection-optimal test statis-
clearly outperforms the matched filter technique because the Si0+ic was cast in the form of TERs and TSRs in Section 5. The

nal_of interest is random, not deterministic. Also displayed is the TFR/TSR-based structure allows for the optimal detector to be im-
optlmal TFR-b:_;\sed quadratic array processor for a coherent array,lemented naturally and efficiently by exploiting the many degrees
environment with}/ = 6 sensors, which clearly outperforms the ¢ feeqom available. In the general case of a partially coherenten-
single sensor TFR detector. . . . vironment, the test statistic included a weighted sum of all cross-
We now show how exploiting the partially coherent environ- trpq or cross-TSRs of the aligned sensor outputs for each value of
ment improves the performance of the quadratic array processory,qihesized angle of arrival. Completely coherent and noncoher-

We simulated coherence loss with small, random phase shifts begnt cases were shown to be special cases of the partially coherent

tween sensors and averaged over several experiments to obtain thgoge| n the coherent case, the optimal test statistic simplified to
decorrelation matrixC. Using the experimentally obtained decor- ;.- 1.de a single auto-TFR or auto-TSR of the sum of the aligned
relation coefficients, the partially coherent optimal quadratic array gengor outputs for each hypothesized angle of arrival. In the non-
processor in (13) was implemented usihf = 6 sensors with  ,parent case, the optimal test statistic simplified to include the
the signal process in (15) and the same noise process as beforey 1 of auto-TFRs or auto-TSRs of the aligned sensor outputs for
Figure 3b displays the ROC curves for the partially coherent, co- each hypothesized angle of arrival. Sectioilitrated the su-

here_nt, and noncohergntquadratic array processors appliedin thi%erior performance the the proposed TFR based quadratic array
partially coherent environment. Note that the noncoherent detec'processorover traditional array detection approaches.

tor has the poorest performance due to the fact that it does not
exploit any of the coherence between sensors. The coherent detec-
tor performs better than the noncoherent detector, but not as well
as the partially coherent detector which exploits the partially co-
herent characteristics of the environment. The partially coheren
detector provides the benefits of both coherent and noncoherent
combining.

03 04 05 06 07 08 09 1 0 01 02 03 04 05 6 07 08 09 1
PROBABILITY OF FALSE ALARM PROBABILITY OF FALSE ALARM

Figure 3: (a) ROC Curves for the Matched Filter Detector, Single-
ensor TFR Detector, and Six-Sensor TFR Coherent Processor (b)
OC Curves for the Partially Coherent, Coherent, and Noncoher-

£nt Detectors Applied in a Partially Coherent Environment
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