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ABSTRACT

Quadratic time-frequency representations (TFRs) and time-scale
representations (TSRs) have been shown to be very useful for de-
tecting nonstationary signals in the presence of nonstationary noise.
The theory developed thus far is only for the single observation
case; however, in many situations involving signal detection, there
are advantages in using an array of receiving sensors. Sensor ar-
rays allow for target or source localization and can provide a large
gain in the SNR. We show that time-frequency and time-scale
representations provide a natural structure for the detection of a
large class of nonstationary signals in the presence of nonstation-
ary noise using an array of sensors. That is, time-frequency and
time-scale provide a detection structure that is both optimal and
allows for efficient implementation. In developing the TFR/TSR-
based optimal quadratic array processor, we consider several types
of array environments including those with full, partial, and no
coherence.

1. INTRODUCTION

The detection of signals in noise is a classical hypothesis testing
problem. In many situations, the signal may include unknown time
and frequency or time and scale offsets. Such situations include the
well known delay-doppler situation in radar/sonar detection prob-
lems. Time-frequency representations (TFRs) and time-scale rep-
resentations (TSRs), which describe the signal jointly in terms of
both time and frequency or time and scale, are powerful tools for
designing the optimal detector in such situations. Recently it has
been shown that the optimal quadratic detector for the detection of
nonstationary Gaussian signals with unknown time and frequency
or time and scale offsets in the presence of noise can be imple-
mented naturally within Cohen’s class of TFRs or TSRs [1]. In
this paper, we will extend this idea to detection using an array of
sensors.

In many situations involving signal detection and estimation,
there are many advantages in using a sensor array instead of a sin-
gle element, directionality and SNR gain are the most important.
In active sensing situations such as radar and sonar, a known wave-
form is generated which in turn propagates through a medium and
is reflected by some target back to the array. That transmitted sig-
nal undergoes a delay and frequency shift in the narrowband case
and a delay and scale offset in the wideband case. In addition, the
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angle at which the return signal arrives may be unknown. More-
over, changing target and environmental characteristics, combined
with other types of disturbances, cause the signals that arrive at the
array to be regarded as random, and at times the physical phenom-
ena responsible for the randomness in the signal make it plausible
to assume that the signals are Gaussian (perhaps nonstationary)
random processes. Though the signal structure is known, it may
still containunknown parameters such as a delay, frequency shift,
scale offset, or angle of arrival. These uncertainties, combined
with the nonstationary nature of the signal and noise processes,
make TFRs and TSRs potentially powerful tools in designing the
optimal detector in the array environment. Traditional array pro-
cessing schemes assume that the signal and noise processes are
stationary and the use of TFRs/TSRs in array processing has been
limited to simple, generally suboptimal, matched-field beamform-
ing techniques.

In this paper we consider the problem of detecting arbitrary
nonstationary second-order signals1 with unknown time and fre-
quency or time and scale offsets arriving in a linear array with an
unknown angle of arrival. We explicitly show how the optimal
detector for such a problem can be implemented naturally and ef-
ficiently in the time-frequency or time-scale domain. This paper is
organized as follows: Section 2 briefly reviews TFRs and TSRs,
followed by a discussion of the detection problem that we con-
sider in Section 3. In Section 4, quadratic detection in a partially
coherent linear array is explored. In Section 5, the array detection
problem will be shown to be naturally suited to time-frequency
or time-scale representations whereby we develop the TFR/TSR-
based optimal quadratic array processors. The model of partial
coherence used includes as special cases the coherent and non-
coherent environments, for which the optimal detector simplifies
considerably. In Section 6 we present an example illustrating the
benefits of the TFR-based quadratic array processor and in Section
7 we conclude the paper.

2. TIME-FREQUENCY AND TIME-SCALE
REPRESENTATIONS

TFRs have become increasingly popular tools for analyzing and
processing signals with time-varying spectral content. A one di-
mensional signalx(t) is mapped by a TFR into a two-dimensional
distribution,Px(t; f), which is a function of both time and fre-
quency. This joint representation exploits the nonstationary char-

1Second-order signals are those which are completely characterized by
their second-order statistics; Gaussian signals are an example.



acteristics of a signal and therefore can be very useful in detecting
nonstationary signals. Similarly, a TSR analyzes a signal jointly in
terms of time and scale.

Any bilinear TFR from Cohen’s class can be expressed as [3]

Px(t; f ;�) =

Z Z
Wx(u; v)�(u� t; v � f)dudv ; (1)

whereWx is the auto-Wigner distribution (WD) ofx, defined as
[3]

Wx(t; f) =

Z
x(t+�=2)x�(t��=2)e�j2�f�d� ; (t; f) 2 IR2 ;

(2)
and� is a two-dimensional kernel that completely characterizes
the TFRPx(t; f ; �). Similarly, any bilinear TSR from the affine
class can be expressed as

Cx(t; a; �) =

Z Z
Wx(u; v)�((u� t)=a; av)dudv ; (3)

where(t; a) 2 IR � (0;1) and again the kernel� completely
characterizes the TSRCx(t; a; �). Cross-TFRsPxy(t; f ; �) and
cross-TSRsCxy(t; a;�) will prove to be useful tools when mul-
tiple signals are being processed. In this case, the auto-WD is
replaced with a cross-WD defined as

Wxy(t; f) =

Z
x(t+�=2)y�(t��=2)e�j2�f� d� ; (t; f) 2 IR2 :

(4)

3. THE DETECTION PROBLEM

Consider the following composite hypothesis testing problem in
continuous time:

H0 : x(t) = n(t)

H1 : x(t) = s(�;�)(t) + n(t) (5)

wheret 2 T , the time interval of observation,x is the observed
signal,n is arbitrary zero-mean complex Gaussian noise with cor-
relation functionRn(t1; t2) = E[n(t1)n

�(t2)], ands is a zero-
mean complex arbitrary second-order signal with correlation func-
tion Rs(t1; t2). The parameters(�; �) represent certain nuisance
parameters that are assumed to be unknown. The parameter� rep-
resents a time shift and the parameter� represents either a scale
offset (c) or frequency shift (�) 2. TFRs and TSRs provide a nat-
ural detection framework for such hypothesis testing problems for
two main reasons: first, detecting a second-order signal (such as
a Gaussian signal) in the presence of Gaussian noise involves a
quadratic function of the observations [4], and bilinear TFRs and
TSRs are quadratic in the observations; second, TFRs and TSRs
posses additional degrees of freedom provided by the TFR and
TSR parameters (time and frequency for Cohen’s class and time
and scale for the affine class).

Because of our assumptions, the dependence ofs on (�; �) is
only through the correlation function, which we denote by�R(�;�)

s .
In the case of time and frequency shifts,

�R(�;�)
s (t1; t2) = Rs(t1 � �; t2 � �)ej2��t1e�j2��t2 (6)

2Actually, we can start by arbitrarily parameterizing the composite hy-
pothesisH1, but from [1] we know time-frequency and time-scale detec-
tors are naturally suited to deal with time and frequency shifts or time and
scale offsets.

for some correlation functionRs. In the case of time and scale
offsets,

�R(�;c)
s (t1; t2) = cRs(c(t1 � �); c(t2 � �)) (7)

again for some correlation functionRs. Note that (6) corresponds
to s(t; �; �) = s(�;�)(t � �)ej2��t in (5), where, for each(�; �),
s(�;�) is any second-order signal with correlation functionRs.
Similarly, (7) is equivalent tos(t; �; c) =

p
cs(�;c)(c(t � �))

for any second-order signals(�;c) with correlation functionRs.
We will consider the parameters(�; �) to be deterministic but un-
known. In statistical hypothesis testing, for each observation,x, a
real-valued test statistic,L(x), is compared to a threshold to de-
cide in favor ofH0 or H1; that is, to decide whether the signal
is present or not. We assume that both the signal and the noise
processes are independent of each other and are completely char-
acterized by their correlation functions.

4. QUADRATIC DETECTION IN A LINEAR ARRAY

In the linear array configuration, the signal comes in to the array
of M sensors with spacingd at angle�, where� is assumed to be
unknown. Figure 1illustrates the linear array configuration. We
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Figure 1: Linear Array Configuration

will denote the signal at theith sensor byxi(t). Due to the linear
array configuration, the signal at theith sensor is a delayed version
of the signal at the first sensor, and the value of the delay depends
on the unknown angle of arrival,�. That is,xi(t) = x1(t� iD),
whereD = d

c
sin(�) andc is the velocity of propagation in the

medium. Note thatxi(t) = s(t � iD) + n(t) when the signal
is present andxi(t) = n(t) when only noise is present. A useful
quantity in the derivation of the optimal detector will be the array
cross-correlation matrix, denoted byP, where the(i; j)th element
is given by the cross-correlation function betweenxi(t) andxj(t);
that is,

Pij = E[xi(t1)x
�

j(t2)] � Rxixj (t1; t2) (8)

LetPs denote the array cross-correlation matrix when the signal
alone is present, and letPn denote the array cross-correlation ma-
trix when the noise alone is present. It is customary to assume that
the noise between sensors is uncorrelated , which implies thatPn

is diagonal and given byPn = diag(Rn ;Rn; : : :Rn).
A concern arises when considering the use of a very large

array in order to achieve high array gain; the signal received at
widely separated sensors may have reduced coherence due to the
complexity in the propagation of the signal from the source to
spatially separated receivers [2]. Since we are only considering
the second-order statistics of the signal, the model for partial co-
herence used will be given in terms of the correlation function.
An exponential power law model [2] will be used whereby the
cross-correlation function between theith andjth sensors will be



scaled by the coefficientcij = e�
ji�jj
L , whereL is a dimension-

less characteristic correlation length. We may arrange the decor-
relation coefficients in matrix form asC = fcijg. Proceeding
with the formulation of the optimal detector, for purposes of sim-
plification, it will be convenient to deal with the aligned sensor
outputs; that is, letyi(t) = xi(t + iD). It will also be con-
venient to arrange the aligned sensor outputs in vector form as
Y

� = [y1(t) y2(t) : : : yM (t)]T where the superscript� denotes
the dependence of aligning the sensor signals on the unknown an-
gle of arrival.

With the assumed decorrelation structure, the array cross- cor-
relation matrix when the signal alone is present, as applied to the
aligned sensor outputs, is given by the following Kronecker prod-
uct:

P
(�;�)
s (t1; t2) = C
 R(�;�)

s (t1; t2) (9)

whereR(�;�)
s (t1; t2) is the autocorrelation function of the signal

component at a particular value of time shift� and scale or fre-
quency offset�. Since the parameters� , �, and� are unknown,
we use the analogue of a generalized likelihood ratio test (GLRT)
[4] in which an estimate of the parameters is formed and used to
obtain the optimal test statistic. The optimal test statistic based on
the deflection3 criterion [4] is given by

Lopt = max
(�;�;�)

h~P�1n
�
C
R(�;�)

s

�
~P
�1
n Y

�;Y�i; (10)

whereRs denotes the linear operator defined by the corresponding
correlation functionRs as

(Rsx)(t) =

Z
Rs(t; �)x(�)d� ; (11)

and ~Pn is a matrix of linear operators corresponding the corre-
lation functions in the matrixPn; observe that~Pn is diagonal
and given by~Pn = diag(Rn;Rn; : : :Rn) whereRn is the lin-
ear operator corresponding to the correlation function of the noise
process. Upon expanding the inner product in (10), we obtain

Lopt = max
(�;�;�)

MX
i=1

MX
j=1

cijhR�1
n R

(�;�)
s R

�1
n y�i (t); y

�
j (t)i: (12)

5. TFR/TSR-BASED ARRAY DETECTION

The connection to TFRs and TSRs is made through the use of the
Weyl correspondence which relates inner products, positive defi-
nite linear operators, and the Wigner distribution. Using the fact
that the Weyl correspondence involves a covariance to time, fre-
quency, and scale offsets, using the methods in [1] it can be veri-
fied that the test statistic in (12) may conveniently be expressed in
terms of TFRs or TSRs, allowing for a natural and efficient imple-
mentation of the optimal detector. In the case where� corresponds
to a frequency shift�, the optimal test statistic is given by

Lopt = max
(t;f;�)

MX
i=1

MX
j=1

cijP
�
yiyj

(t; f ;� =WS
R
�1

n RsR
�1

n
):

(13)

3Deflection-optimal detectors can be interpreted as “maximum SNR”
detectors because deflection is a measure of SNR.

We use the superscript� here to denote the fact that the TFR must
be formed for each hypothesized angle of arrival. When� corre-
sponds to a scale offsetc, the optimal test statistic is given by

Lopt = max
(t;c;�)

MX
i=1

MX
j=1

cijC
�
yiyj

(t;
1

c
;� =WS

R
�1

n RsR
�1

n
):

(14)
Observe that in (13) and (14) we must form the sum of all weighted
cross-TFRs/TSRs; we will refer to this quantity as a matrix TFR
or TSR. Figure 2a illustrates the partially coherent detection struc-
ture. Because the detector involves forming TFRs or TSRs of sig-
nals that are aligned to examine different spatial directions, we
may think of this detection structure in terms of time-frequency-
space or time-scale-space. Since we have not assumed any spatial
statistical characteristics of the signal, the kernel is the same re-
gardless of the angle of arrival being analyzed.

If the array environment is perfectly coherent, then we have
thatcij = 18i; j. Using fundamental properties of bilinear TFRs
and TSRs, it can be verified that the optimal test statistic will in-
volve first summing the sensor observations and then applying the
TFR/TSR (with the kernel as before) for each hypothesized angle
of arrival and choosing the maximum value. If the array envi-
ronment is noncoherent, thenC = I and it can be verified that
the optimal test statistic will include first taking the TFR/TSR of
each sensor observation (again, with kernel as before), and then
summing the resulting TFRs/TSRs foreach hypothesized angle
of arrival and choosing the maximum value. Figure 2b and fig-
ure 2c illustrate the coherent andnoncoherent detection structures,
respectively.
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Figure 2: TFR/TSR-Based Optimal Quadratic Array Processors:
(a) Partially Coherent Detector (b) Coherent Detector (c) Non-
Coherent Detector



6. SIMULATION

In this section we present an example illustrating the performance
of the proposed optimal quadratic array processor. Let us suppose
that the signal of interest is characterized by the following random
process:

S(t) =

3X
k=1

Zke
��kt

2

; (15)

whereZk � N (0; 1) and each�k is a fixed complex number.
Note thatS(t) is the sum of three chirp signals4 with random am-
plitude scaling factorZk ; each of the chirps is characterized by�k
whose real part determines the variance of the Gaussian envelope
and imaginary part determines the chirp rate.

Let us first illustrate the advantagesof the TFR-based array de-
tector over a traditional approach. Unknown time and frequency
shifts as well as an unknown angle of arrival were introduced, and
independent white Gaussian noise was added at each sensor such
that the SNR was 0 dB (that is,Rn = �I). In radar/sonar signal
processing, the traditional approach in detecting the presence of
a signal with unknown time and frequency offsets is to compute
the cross-ambiguity function (point-by-point matched filter) of the
transmitted and received signal and use the maximum value. Fig-
ure 3a displays the ROC curves for the single sensor matched filter
and TFR-based detectors. Observe how the TFR-based detector
clearly outperforms the matched filter technique because the sig-
nal of interest is random, not deterministic. Also displayed is the
optimal TFR-based quadratic array processor for a coherent array
environment withM = 6 sensors, which clearly outperforms the
single sensor TFR detector.

We now show how exploiting the partially coherent environ-
ment improves the performance of the quadratic array processor.
We simulated coherence loss with small, random phase shifts be-
tween sensors and averaged over several experiments to obtain the
decorrelation matrixC. Using the experimentally obtained decor-
relation coefficients, the partially coherent optimal quadratic array
processor in (13) was implemented usingM = 6 sensors with
the signal process in (15) and the same noise process as before.
Figure 3b displays the ROC curves for the partially coherent, co-
herent, and noncoherent quadratic array processors applied in this
partially coherent environment. Note that the noncoherent detec-
tor has the poorest performance due to the fact that it does not
exploit any of the coherence between sensors. The coherent detec-
tor performs better than the noncoherent detector, but not as well
as the partially coherent detector which exploits the partially co-
herent characteristics of the environment. The partially coherent
detector provides the benefits of both coherent and noncoherent
combining.

7. SUMMARY

In this paper we showed that time-frequency and time-scale based
detectors are naturally suited to quadratic detection in an array en-
vironment. In Section 2 we reviewed time-frequency and time-
scale distributions and in Section 3 we set up the detection prob-
lem. In Section 4 we considered quadratic detection when using
a linear array of receiving sensors in a partially coherent environ-
ment. The signal was assumed to contain an unknown time and
frequency shift or unknown time and scale offset, and the angle of

4Chirp waveforms are popular in radar and sonar signal processing.
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Figure 3: (a) ROC Curves for the Matched Filter Detector, Single-
Sensor TFR Detector, and Six-Sensor TFR Coherent Processor (b)
ROC Curves for the Partially Coherent, Coherent, and Noncoher-
ent Detectors Applied in a Partially Coherent Environment

arrival into the array was assumed to be unknown. The deflection
criterion we employed applied to arbitrary second-order signals in
Gaussian noise.

By using a GLRT approach, the deflection-optimal test statis-
tic was cast in the form of TFRs and TSRs in Section 5. The
TFR/TSR-based structure allows for the optimal detector to be im-
plemented naturally and efficiently by exploiting the many degrees
of freedom available. In the general case of a partially coherent en-
vironment, the test statistic included a weighted sum of all cross-
TFRs or cross-TSRs of the aligned sensor outputs for each value of
hypothesized angle of arrival. Completely coherent and noncoher-
ent cases were shown to be special cases of the partially coherent
model. In the coherent case, the optimal test statistic simplified to
include a single auto-TFR or auto-TSR of the sum of the aligned
sensor outputs for each hypothesized angle of arrival. In the non-
coherent case, the optimal test statistic simplified to include the
sum of auto-TFRs or auto-TSRs of the aligned sensor outputs for
each hypothesized angle of arrival. Section 6illustrated the su-
perior performance the the proposed TFR based quadratic array
processor over traditional array detection approaches.
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