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ABSTRACT

In this paper a definition of multiresoltuion analysis (MRA) of
Gaussian processes is proposed. The problem, in a natural way,
reduces to the MRA of the associated reproducing kernel Hilbert
space. We then show that for processes synthesized from Gaussian
white process by fractional integration of order� � 1, this defi-
nition is applicable. The MRA results in an orthogonal expansion
of these processes. The region of interest is the positive real line.
Using this representation then a decomposition of a wider class of
Gaussian processes is given. This representation is multiscale in
two ways : firstly, the Gaussian process is split into various com-
ponent processes characterized by the smoothness of their sample
paths and secondly, each of these component processes has a MRA
as defined in this paper.

1. INTRODUCTION

MRA of L2(R) defined by Mallat [8] and the associated wavelet
transform have found many applications in the processing of deter-
ministic signals [14]. The wavelet transform has also been used for
the analysis of stochastic processes. Wornell [16] has suggested a
K-L-like expansion using wavelets to approximate1=f processes.
Because of the self-similarity property of fractional Brownian mo-
tions, Flandrin [6] has suggested the use of wavelets for their study.
Tewfik and Kim [15] have studied the correlation structure of the
wavelet coefficients of fractional Brownian motion. Dijkermann
and Majumdar [5] have discussed the relation between wavelet
transforms of stochastic processes with paths inL2 and multires-
olution models on trees suggested by Bassevilleet al [2]. Krim
and Pesquet [7] have suggested a discrete time multiscale frame-
work using which they study processes with stationary increments.
Using generalized wavelet packet analysis they have suggested a
class of processes with nonstationary increments. The main aim
of most of the above mentioned work has been to study and model
the wavelet coefficients of stochastic processes. On the other hand
the main aim in Benassi and Jaffard [3] is to obtain orthogonal
decompositions of Gaussian processes. They give a multiscale,
orthogonal decomposition for a large class of Gaussian processes
that includes all Markov processes and fractional Brownian mo-
tions. This paper uses their methodology to obtain orthonormal
bases for the reproducing kernel Hilbert space (RKHS) associated
with a Gaussian process.

In this paper a definition of MRA of Gaussian processes is
given in Section 3.1 by taking into consideration various proper-
ties that are desired from any multiresoltuion scheme. Section 3.2

shows how this definition can be applied to a class of Gaussian
processes on[0;1) obtained by fractional integration of Gaussian
white process. In Section 3.3 we give a decomposition of a larger
class of Gaussian processes. Finally, in Section 4, various issues
related to the work in this paper and the scope for future research
are discussed. To begin with some basic concepts required in this
paper are summarized in Section 2.

2. BASIC CONCEPTS

2.1. RKHS associated with a Gaussian process

A Gaussian random process is defined as a collection of random
variablesfX(t) : X(t) 2 L2(
;F ; P ); t 2 Tg, whereT is some
indexing set,(
;F ;P) is a probability space andL2(
;F ;P)
is the Hilbert space of zero mean, finite variance Gaussian ran-
dom variables. The inner product on this space is defined by,
< x; y >= E(xy), whereE denotes the expectation. The Hilbert
space of random variables generated by this process,HX , is the
closure inL2(
;F ;P) of the linear span ofX(t); t 2 T . Each
random variablez in HX is associated with a functionfz on T
defined as,fz(t) = E(zX(t)). The inner product between two
functions is defined as,< fu; fv >= E(uv). With this inner
product, these functions constitute a Hilbert space,HX , that is
isomorphic and isometric toHX . Let R(t; s) be the covariance
kernel of the processX(:). It follows that,

R(:; t) 2 HX 8 t 2 T (1)

hfz(:); R(:; t)i = E(zX(t)) = fz(t) (2)

These two properties imply thatHX is a reproducing kernel Hilbert
space with reproducing kernelR(t; s) (Parzen [11]). Letf��(:)g
be an orthonormal basis ofHX . Using (2) and the Parsevals iden-
tity it can be shown thatR(t; s) =

P
�
��(t)��(s) and the pro-

cess can be synthesized as,

X(t) =
X
�

c���(t); (3)

where the random variables,c�’s are s.tE(c�c�0) = ���0 . For a
detailed discussion of RKHS associated with Gaussian processes
the reader is referred to Parzen [11]. A detailed discussion on
RKHS can be found in Aronszajn [1].



2.2. Processes characterized by fractional differintegration

2.2.1. Fractional Calculus

Fractional calculus deals with the definition and study of deriva-
tives and integrals of orders that are arbitrary real numbers. There
are many ways in which differintegration ( following the nomen-
clature in Oldham and Spanier [10] ) can be defined. In this paper
we shall have occasion to use the Riemann-Liouville definition for
q < 0, h

dqf

dxq

i
R�L

=

Z x

0

(x� y)�q�1f(y)dy (4)

For q � 0, following Oldham and Spanier [10], the definition is
given by,

dqf

dxq
=

dn

dxn

�
dq�nf

dxq�n

�
R�L

(5)

wheren is any integer greater thanq. A detailed study of fractional
calculus is given in Oldham and Spanier [10]. Here only a few
properties that are required in this paper are mentioned, namely;

1. The operatord
q

dxq
( henceforth denoted asdq ) is linear for

all realq.

2. Scaling :dqf(ax) = aq(dqf)(ax), a > 0.

3. A function is said to be differintegrable if it can be written
in the form,f(x) = xp

P
1

j=0
ajx

j=n, wherea0 6= 0, p >
�1 andn is a integer greater than 0. The following lemma
regarding term by term differintegration holds true,

Lemma 1 Let
P

j
fj be a series of differintegrable func-

tions. Forq � 0 term by term differintegration is possible if
this series is uniformly convergent over the region of inter-
est and the differintegrated series is also uniformly conver-
gent. Forq > 0 term by term differintegration is possible
if
P

j
f
(q)
j and

P
j
fj are both uniformly convergent in the

region of interest.

4. If dqf = g, thenf(x) = d�qg+ c1x
q�1 + :::+ cmx

q�m,
where0 < q � m < q + 1 andm = 0 for q � 0.

2.2.2. Processes synthesized by differintegration

On the positive half line consider the processes that are obtained
by the differintegration of order��, � > 0, of Gaussian white
process i.e;

X(t) =

Z t

0

(t� y)��1dB(y) (6)

whereB(�) is the Brownian motion and the integral is understood
in the mean squared sense. It can be easily seen that the RKHS
associated with this process is characterized by the covariance ker-
nel,

R(t; s) =

Z
1

0

k�(t; y)k�(s; y)dy (7)

wherek�(t; y) = (t � y)��1 for y � t and is0 otherwise. It
should be noted thatk�(t; :) belongs toL2[0;1) for all t � 0 and
hence, by the Cauchy-Schwartz inequality, the covariance kernel
is finite for all t; s 2 [0;1).

Consider the space defined by,H = ff : d�f 2 L2[0;1);

f (��i)(0) = 0; i = 0; 1; :::; mg, wherem is the smallest integer
greater than or equal to�. LetH� denote the space obtained by

the completion ofH under the norm induced by the inner prod-
uct hf; giH� =

R
1

0
d�f d�g. That this is a valid inner prod-

uct can be checked by taking into account the zero initial condi-
tions. The covariance kernel in (7) is also the reproducing kernel
of the Hilbert spaceH�. For proving this, (1) and (2) have to be
verified. Since the reproducing kernel completely characterizes a
RKHS (Theorem 5b, Parzen [11] ), the Hilbert spaceH� is the
RKHS of the process defined in (6). For an orthogonal decompo-
sition ofX(t) we want to find orthonormal bases ofH�. One way
to obtain orthonormal bases is to note that the Hilbert spaceH�

can be considered to be the image ofL2[0;1) under the operator
d��. The operatord�� preserves the inner product, is continu-
ous and is invertible because of the zero initial conditions ( see
Property 4 of Section 2.1.1). Hence iff �g is an orthonormal ba-
sis ofL2[0;1), thenfd�� �g is an orthonormal basis ofH�.
This way of constructing orthonormal bases forH� will be used
in Section 3 to obtain a MRA of the processes synthesized by (6).

2.3. MRA of L2[0;1)

A MRA of L2[0;1) can be obtained from a MRA ofL2(R) us-
ing a scaling function and a wavelet with compact support [4]. The
main idea is to restrict the functions in the multiresolution spaces
of L2(R) to [0;1). The translates of�(:) and (:) that are unaf-
fected by the restriction (interior functions) are kept as they are and
those truncated by the restriction are modified to obtain an equiva-
lent set of edge functions. For a detailed study of the methods used
to obtain the edge functions, the reader is referred to Cohenet al
[4]. We only mention that two scale relations can be derived for
this case which characterize a pair of high-pass and low-pass fil-
ters corresponding to the interior functions and a pair of filters for
each of the edge functions. In this paper the distinction in notation
between the edge and interior functions is understood implicitly
and is dropped.

3. MRA OF SOME GAUSSIAN PROCESSES

3.1. Definition of MRA

While defining a MRA for a stochastic process one wishes to cap-
ture the following ideas,

1. A concept like the MRA ofL2(R) applicable to the col-
lection of sample paths that captures the notion of signal
representation at various levels of detail.

2. The random process at a finer level must be expressible as
a sum of two independent processes, one of them being a
process at the coarser level.

3. The MRA should result in a decomposition of the process
in which the coefficients involved are uncorrelated.

4. The MRA should facilitate local study of the process.

5. Given any realization of the process it should be possible
to efficiently compute the values attained by the underlying
random coefficients.

From (3) it follows that all the functions in the RKHS of the pro-
cess are sample paths but not all sample paths belong to the RKHS.
Thus, it is essential that we have a MRA of the RKHS which
should be extendable to the sample paths not included in the RKHS.
However since the coarseness of the signal is characterized by the
functions in the linear combination and not by the coefficients we
shall restrict ourselves a MRA of the RKHS.



Definition 1 The MRA of a process with RKHSHX is defined as,
(A) A sequence of closed subspaces:::V�1 � V0 � V1 � :::, such
that : (1)

S
1

j=�1
Vj = HX ; (2)

T
j
Vj = f0g; (3) f(x) 2 Vj ,

f(2x) 2 Vj+1; (4) f(x) 2 V0 , f(x� k) 2 V0 8 k � 0;
(B) A computation strategy that can evaluate the random coeffi-
cients in the resulting expansion of the process w.p. 1.

Part (B) of the definition of MRA is new. We believe this to be
an important component for the definition of MRA for stochastic
processes. The motivation for the condition (B) will become clear
in the next section. It will now be shown that MRA defined in this
way is possible for processes discussed in Section 2.2.2. Note that
for these processesHX = H�.

3.2. MRA of HX

Let fV 0j g be a sequence of closed subspaces that constitutes a
MRA of L2[0;1). LetW 0

j denote the orthogonal complement of
V 0j in V 0j+1 and let� and be the scaling function and the wavelet
respectively. Then the following theorem holds,

Theorem 1 Let Vj = d��V 0j . Then the sequence of closed sub-
spacesfVjg satisfies part (A) of the definition of MRA.

Proof : Property (A.1) :Vj � HX 8 j. Hence
S

j
Vj � HX . Let

f 2
S

j
Vj . LetNf (�) be a neighbourhood off . Now,f = d��g

for someg 2 V 0k, for somek. By the continuity ofd��, it follows
that there is a� > 0 such that,d��Ng(�) � Nf (�). But

S
j
V 0j

is dense inL2[0;1). Hence there is ag1 2 L2[0;1)
T
Ng(�).

Hence,f1 = d��g1 2 Nf (�). But d��L2[0;1) is dense inHX .
Hence there is af2 2 HX such thatf2 2 Nf1(�). It follows that
f2 2 Nf (2�). This proves property (A.1).
Property (A.2):f 2

T
j
Vj ) f = d��g, whereg 2

T
j
V 0j . But

this implies thatg = 0. Hencef = 0.
Property (A.3): Iff(x) 2 V 0j thenf(2x) 2 V 0j+1. Using this, the
desired property now follows from the definition ofVj and Prop-
erty 2 of Section 2.1.1.
Property (A.4): This can be established easily by a change of vari-
able in the definition ofd��. 2

Let Wj = d��W 0

j . The bases forVj andWj are obtained
from the corresponding bases forV 0j andW 0

j via the operatord��.
Also due to property (A.3) and (A.4), except for the edge func-
tions, the other basis functions are translates and dilates of a single
function. Due to the linearity ofd�� the two scale relations are
also the same. Sincefd�� j;kg is an orthonormal basis forHX ,
the process has an orthogonal decomposition of the form,

X(t) =

1X
j=�1

1X
k=0

cj;k(d
�� j;k)(t) (8)

where the distinction in notation between the edge and the interior
functions is dropped and the random coefficients are defined by,
cj;k =

R
1

0
 j;k(y)dB(y) and arei.i.d,N(0; 1).

What is the motivation for condition (B)? Consider the case
of Brownian motion (� = 1). Given a sample path, to find the
coefficient values it is required that the inner product of the sample
path with the basis functions be evaluated. But the sample path
may not belong to the RKHS, and so, such a method does not have
any meaning. In fact, for the Brownian motion, the evaluation of
the inner product involves the first derivative of the Brownian path
but the Brownian paths can be shown to be differentiable nowhere

w. p. 1. ( Chapter 1, McKean [9] ). Hence, one has to demonstrate
how the coefficients can be evaluated for sample paths that are not
in the RKHS. Consider the case of� � 1. Choose an integer
n such thatn � 1 < � � n. Let � be a scaling function with
compact support and be the corresponding wavelet with compact
support. By restricting the MRA to a coarsest scale, without loss
of generality the 0 scale, the process can be written as,

X(t) =
X
k

c00;k(d
���0;k)(t) +

1X
j=0

X
k

cj;k(d
�� j;k)(t) (9)

Given a sample pathX(!; t) we wish to evaluate the values taken
by the random coefficients. Let the sample path belong to the
RKHS. Then,cj;k(!) = hX(!; :); d�� j;k(:)iH� , and hence,

cj;k(!) =

Z
1

0

X(�)(!; t) j;k(t)dt (10)

= (�1)n
Z b

a

X(��n)(!; t) 
(n)
j;k (t)dt (11)

where in going from (10) to (11) integration by parts has been
used. In addition, the fact that j;k(t) has support in some interval
[a; b] has been used. More conditions can be imposed on so that
formula (11) can be used to evaluate the coefficients even when
the sample path is not in the RKHS. The following theorem holds,

Theorem 2 Let� � 1 and integern such thatn� 1 < � � n. If
the wavelet and the scaling function� are such that,

� They have compact support,

� they are differintegrable,

� their nth derivatives are square integrable,

then the coefficients in (9) can be evaluated by (11) w.p 1.

We only provide a sketch of the proof here. First the theorem is
proved for� = 1 and then it is extended to� > 1 using Prop-
erty 3 of Section 2.2.1. The only important step in the proof is
the exchange of the order of summation and integration. This is
justified by showing that under the assumptions made, the series
(8) converges uniformly w.p. 1 on any finite interval. The proof
of this fact is a modification of the proof of continuity of Brown-
ian sample paths given in Chapter 1, McKean [9]. The details of
this proof are given in [13]. The condition of differintegrability on
� and is not very restrictive, as on a compact interval, continu-
ous functions can be uniformly approximated by polynomials and
hence most choices of� and will satisfy this condition.

Once the coefficients are evaluated at one scale then the co-
efficients at the coarser levels can be obtained by discrete filters
characterized by the two scale relations. Because of the linearity
of the operatord�� the two scale relations are the same as that for
the MRA ofL2[0;1). The computation strategy for� � 1 is thus
completely specified.

4. DECOMPOSITION OF A WIDER CLASS OF
PROCESSES

Theorem 3 Let k(x) =
P

i
aix

�i�1, �i > 0 and ai are real,
be such that the series converges uniformly tok(x) in any finite



interval. Then the process,X(t) =
R t
0
k(t � y)dB(y) has a de-

composition of the form,

X(t) =
X
i

ai
X
j;k

cij;k(d
��i j;k)(t) (12)

where is a wavelet and the random coefficientscij;k are such
that,E(cij;kc

n
l;m) = �j;l�k;m andcij;k = cnj;k w.p. 1.

Proof: Because of the assumption of uniform convergence, after
substituting fork(t � y) in the definition ofX(t), the order of
integration and summation can be interchanged. Thus the process
X(t) is a linear combination of processes of the kind (6). For these
processes a decomposition like (8) is possible and (12) follows.
The properties of the random coefficients are a direct consequence
of their definition.

The multiscale decomposition (12) is characterized by two pa-
rameters. One of the parameters is the smoothness ( by this we
refer to the smoothness of sample paths) level characterized by
�i. Further at each smoothness level a multiresolution structure
exists.

5. DISCUSSION

In this paper a definition of MRA of Gaussian processes was mo-
tivated and then it was shown that the definition is applicable to
a class of nonstationary processes obtained from Gaussian white
process by fractional integration of order� � 1. For the case of
� < 1 we have proved only part (A) of the definition. Thus for
� < 1 the processes can be synthesized using (8) or (9) but it is
not clear how the coefficients can be evaluated w. p. 1. The de-
composition of these processes leads to a decomposition of a wide
class of processes mentioned in Theorem 3. The decomposition
(12) captures the notion of multiresolution in two ways. The pro-
cess is split into component processes of different smoothness and
the process at each level of smoothness has a MRA as defined in
Section 3.1. The class of processes that can be studied in this way
is indeed very wide. In particular, Gaussian processes synthesized
from Gaussian white process by the inverse systems of constant
coefficient differential operators are included in this class. This
can be shown by considering the power series expansion of the
exponential function. The differential operators are of particular
interest because of the fact that Markov processes are character-
ized by local operators ( Pitt [12]). Again, we have not dealt with
the issue of evaluating the coefficients in (12). This is a direction
for future work.

Some issues regarding the representation (8) and (12) have not
been mentioned in this paper due to lack of space. One of the crit-
ical issues, from the point of view of local analysis, is the sup-
port and decay of the basis functions for the RKHS. By a proper
choice of the original wavelet it is possible to do local analysis.
Another important issue is that of approximation. It is not very
difficult to study the variation with scale of theL1 andL2 norms
of the basis functions along the smoothness level as well as along
the resolution level. These calculations can be used to obtain ap-
proximations to the process. Finally which processes have a de-
composition of the form (8) ? A necessary condition for such a
decomposition is thatR(2t; 2s) = constant � R(t; s). For ex-
ample a process synthesized from Gaussian white noise from the
inverseof the operatorD = d

dx
+ a, a 6= 0 has a covariance ker-

nel,R(t; s) = ea(t+s)

2a
(1 � e�2a(t^s)) which does not satisfy the

above mentioned property. The reason for this is that the operator
D does not commute with the dilation operation up to a scale fac-
tor and hence condition (A.3) is not satisfied. Hence the definition
of MRA has to be modified if more processes are to be analyzed
in a MRA framework and (12) indicates a natural way to do so.
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